testing GEMM

This commit is contained in:
Philippe Tillet
2019-07-17 12:38:30 -07:00
parent 791c91ee63
commit d2e116d057

View File

@@ -9,7 +9,7 @@ library_dir = os.path.dirname(os.path.realpath(__file__))
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
def run_dot():
M, N, K = 8192, 8192, 8192
M, N, K = 128, 128, 128
a = tf.placeholder(tf.float16, shape=[M, K])
b = tf.placeholder(tf.float16, shape=[N, K])
# c = tf.matmul(a, b, transpose_a=True)
@@ -23,9 +23,11 @@ def run_dot():
result = sess.run([c], feed_dict = {a: ha,
b: hb})[0]
# Test
#hresult = np.dot(ha.T, hb).T
#dif = np.abs(result - hresult)
#print("dif: %f" % np.max(dif))
hresult = np.dot(ha.T, hb).T
dif = np.abs(result - hresult)
print(hresult)
print(result)
print("dif: %f" % np.max(dif))
def run_conv():
B, C, H, W = 16, 32, 32, 32
@@ -128,6 +130,6 @@ def run_batchnorm():
print(np.max(np.abs(dg_t - dg_n)))
print(np.max(np.abs(db_t - db_n)))
#run_dot()
run_shift()
run_dot()
#run_shift()
#run_batchnorm()