[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-07-20 00:49:33 +00:00
parent 9f8b4adf8e
commit ec25d931b6
167 changed files with 258 additions and 258 deletions

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: d4d2f4c1324dbd398a6698be141f3883
config: 3713c272a80f7b98e5b262b1104402b1
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -234,11 +234,11 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
2 16384.0 31.999999 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -255,7 +255,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 37.083 seconds)
**Total running time of the script:** ( 1 minutes 47.685 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:

View File

@@ -278,17 +278,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 195.047621
0 256.0 512.000001 512.000001 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 199.038365
94 12288.0 812.429770 416.101597 199.298541
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 810.925276 412.546756 199.209928
97 12672.0 811.007961 412.097543 199.264875
93 12160.0 812.359066 406.179533 198.530610
94 12288.0 812.429770 415.661740 198.895304
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 810.925276 412.971190 198.716830
97 12672.0 811.007961 412.097543 198.776477
[98 rows x 4 columns]
@@ -306,7 +306,7 @@ In the above plot, we can see that:
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 3 minutes 32.694 seconds)
**Total running time of the script:** ( 3 minutes 33.159 seconds)
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:

View File

@@ -459,37 +459,37 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 3.276800
1 384.0 7.372800 ... 7.899428 8.507077
2 512.0 14.563555 ... 15.420235 16.384000
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
5 896.0 37.971025 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 67.305878
10 1536.0 80.430545 ... 81.355034 79.526831
10 1536.0 79.526831 ... 81.355034 79.526831
11 1664.0 63.372618 ... 63.372618 62.492442
12 1792.0 72.983276 ... 73.460287 59.467852
12 1792.0 72.983276 ... 72.983276 59.467852
13 1920.0 69.120002 ... 71.257735 70.892307
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.155572 ... 88.261612 86.367588
16 2304.0 68.446623 ... 78.064941 77.558029
17 2432.0 71.305746 ... 86.711310 85.915795
18 2560.0 78.019048 ... 82.539044 81.310171
19 2688.0 83.552988 ... 90.102270 89.888756
20 2816.0 83.712490 ... 84.852542 83.873477
21 2944.0 82.373605 ... 83.758038 82.921853
22 3072.0 82.540970 ... 85.922766 88.335577
23 3200.0 84.993363 ... 96.676741 96.385543
24 3328.0 84.003845 ... 86.217120 81.162679
25 3456.0 81.026701 ... 85.767626 89.183149
26 3584.0 87.211821 ... 99.463928 97.840469
27 3712.0 83.247783 ... 89.273764 84.088676
28 3840.0 85.070769 ... 90.723546 88.686451
29 3968.0 93.219206 ... 88.103928 87.441013
30 4096.0 90.565269 ... 86.037005 82.597115
14 2048.0 73.584279 ... 78.398206 77.314362
15 2176.0 83.155572 ... 87.494120 85.632545
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.711310 86.179335
18 2560.0 78.019048 ... 82.331658 81.715711
19 2688.0 83.369354 ... 90.532356 89.464755
20 2816.0 84.360174 ... 84.687779 83.873477
21 2944.0 82.373605 ... 83.758038 82.102191
22 3072.0 82.540970 ... 89.593522 88.612060
23 3200.0 84.544253 ... 96.822991 95.665176
24 3328.0 83.905938 ... 85.398926 84.101981
25 3456.0 82.773682 ... 86.318594 88.400840
26 3584.0 86.457107 ... 97.416461 98.699661
27 3712.0 83.317214 ... 88.955779 85.491947
28 3840.0 84.036474 ... 93.801526 84.679936
29 3968.0 93.576636 ... 81.025193 81.512316
30 4096.0 88.475759 ... 93.858555 89.928129
[31 rows x 5 columns]
@@ -499,7 +499,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 7 minutes 17.371 seconds)
**Total running time of the script:** ( 7 minutes 24.521 seconds)
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:

View File

@@ -240,7 +240,7 @@ References
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.280 seconds)
**Total running time of the script:** ( 0 minutes 0.282 seconds)
.. _sphx_glr_download_getting-started_tutorials_04-low-memory-dropout.py:

View File

@@ -42,14 +42,14 @@ Layer Normalization
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 362.477870 512.000013
4 3072.0 712.347810 378.092307 501.551037
4 3072.0 712.347810 375.206126 496.484863
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 458.293714
7 4608.0 670.254540 396.387087 431.157877
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 396.969169 417.185184
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 705.271522 400.360920 400.360920
6 4096.0 728.177767 381.023256 448.876695
7 4608.0 670.254540 396.387087 426.173427
8 5120.0 688.403381 397.669909 426.666652
9 5632.0 698.542675 396.969169 413.357796
10 6144.0 702.171410 402.885254 411.313806
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 393.846167 387.634072
14 8192.0 633.198054 393.609605 371.308771
@@ -59,9 +59,9 @@ Layer Normalization
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 410.492372 378.345375
21 11776.0 520.486200 409.599991 378.345375
22 12288.0 514.680630 414.784810 383.251457
23 12800.0 504.433489 410.420828 377.163903
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 481.882350 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
@@ -393,7 +393,7 @@ Layer Normalization
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 5 minutes 38.079 seconds)
**Total running time of the script:** ( 5 minutes 40.195 seconds)
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:

View File

@@ -385,7 +385,7 @@ This is a Triton implementation of the Flash Attention algorithm
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.073 seconds)
**Total running time of the script:** ( 0 minutes 0.072 seconds)
.. _sphx_glr_download_getting-started_tutorials_06-fused-attention.py:

View File

@@ -152,7 +152,7 @@ We can also customize the libdevice library path by passing the path to the `lib
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.264 seconds)
**Total running time of the script:** ( 0 minutes 0.253 seconds)
.. _sphx_glr_download_getting-started_tutorials_07-libdevice-function.py:

View File

@@ -5,20 +5,20 @@
Computation times
=================
**18:05.845** total execution time for **getting-started_tutorials** files:
**18:26.166** total execution time for **getting-started_tutorials** files:
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 07:17.371 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 07:24.521 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:38.079 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:40.195 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:32.694 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:33.159 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:37.083 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:47.685 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.280 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.282 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_07-libdevice-function.py` (``07-libdevice-function.py``) | 00:00.264 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_07-libdevice-function.py` (``07-libdevice-function.py``) | 00:00.253 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_06-fused-attention.py` (``06-fused-attention.py``) | 00:00.073 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_06-fused-attention.py` (``06-fused-attention.py``) | 00:00.072 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+

View File

@@ -326,11 +326,11 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
2 16384.0 31.999999 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -342,7 +342,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 37.083 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 47.685 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 195.047621
0 256.0 512.000001 512.000001 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 199.038365
94 12288.0 812.429770 416.101597 199.298541
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 810.925276 412.546756 199.209928
97 12672.0 811.007961 412.097543 199.264875
93 12160.0 812.359066 406.179533 198.530610
94 12288.0 812.429770 415.661740 198.895304
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 810.925276 412.971190 198.716830
97 12672.0 811.007961 412.097543 198.776477
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 32.694 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 33.159 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 3.276800
1 384.0 7.372800 ... 7.899428 8.507077
2 512.0 14.563555 ... 15.420235 16.384000
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
5 896.0 37.971025 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 67.305878
10 1536.0 80.430545 ... 81.355034 79.526831
10 1536.0 79.526831 ... 81.355034 79.526831
11 1664.0 63.372618 ... 63.372618 62.492442
12 1792.0 72.983276 ... 73.460287 59.467852
12 1792.0 72.983276 ... 72.983276 59.467852
13 1920.0 69.120002 ... 71.257735 70.892307
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.155572 ... 88.261612 86.367588
16 2304.0 68.446623 ... 78.064941 77.558029
17 2432.0 71.305746 ... 86.711310 85.915795
18 2560.0 78.019048 ... 82.539044 81.310171
19 2688.0 83.552988 ... 90.102270 89.888756
20 2816.0 83.712490 ... 84.852542 83.873477
21 2944.0 82.373605 ... 83.758038 82.921853
22 3072.0 82.540970 ... 85.922766 88.335577
23 3200.0 84.993363 ... 96.676741 96.385543
24 3328.0 84.003845 ... 86.217120 81.162679
25 3456.0 81.026701 ... 85.767626 89.183149
26 3584.0 87.211821 ... 99.463928 97.840469
27 3712.0 83.247783 ... 89.273764 84.088676
28 3840.0 85.070769 ... 90.723546 88.686451
29 3968.0 93.219206 ... 88.103928 87.441013
30 4096.0 90.565269 ... 86.037005 82.597115
14 2048.0 73.584279 ... 78.398206 77.314362
15 2176.0 83.155572 ... 87.494120 85.632545
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.711310 86.179335
18 2560.0 78.019048 ... 82.331658 81.715711
19 2688.0 83.369354 ... 90.532356 89.464755
20 2816.0 84.360174 ... 84.687779 83.873477
21 2944.0 82.373605 ... 83.758038 82.102191
22 3072.0 82.540970 ... 89.593522 88.612060
23 3200.0 84.544253 ... 96.822991 95.665176
24 3328.0 83.905938 ... 85.398926 84.101981
25 3456.0 82.773682 ... 86.318594 88.400840
26 3584.0 86.457107 ... 97.416461 98.699661
27 3712.0 83.317214 ... 88.955779 85.491947
28 3840.0 84.036474 ... 93.801526 84.679936
29 3968.0 93.576636 ... 81.025193 81.512316
30 4096.0 88.475759 ... 93.858555 89.928129
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 17.371 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 24.521 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -374,7 +374,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.280 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.282 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -200,14 +200,14 @@ to download the full example code</p>
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 362.477870 512.000013
4 3072.0 712.347810 378.092307 501.551037
4 3072.0 712.347810 375.206126 496.484863
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 458.293714
7 4608.0 670.254540 396.387087 431.157877
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 396.969169 417.185184
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 705.271522 400.360920 400.360920
6 4096.0 728.177767 381.023256 448.876695
7 4608.0 670.254540 396.387087 426.173427
8 5120.0 688.403381 397.669909 426.666652
9 5632.0 698.542675 396.969169 413.357796
10 6144.0 702.171410 402.885254 411.313806
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 393.846167 387.634072
14 8192.0 633.198054 393.609605 371.308771
@@ -217,9 +217,9 @@ to download the full example code</p>
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 410.492372 378.345375
21 11776.0 520.486200 409.599991 378.345375
22 12288.0 514.680630 414.784810 383.251457
23 12800.0 504.433489 410.420828 377.163903
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 481.882350 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 38.079 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 40.195 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.073 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.072 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -276,7 +276,7 @@ tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device=&#39;cuda:
The maximum difference between torch and triton is 2.384185791015625e-07
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.264 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.253 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-07-libdevice-function-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/3ff29f967ace7985da24aab10352fc76/07-libdevice-function.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">07-libdevice-function.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>18:05.845</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>18:26.166</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,31 +183,31 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>07:17.371</p></td>
<td><p>07:24.521</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:38.079</p></td>
<td><p>05:40.195</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:32.694</p></td>
<td><p>03:33.159</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:37.083</p></td>
<td><p>01:47.685</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.280</p></td>
<td><p>00:00.282</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.264</p></td>
<td><p>00:00.253</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.073</p></td>
<td><p>00:00.072</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: d4580356e61b052144cc3e567cff901c
config: f340e4ec116a352d4a2866d4b3e3fe00
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More