[examples] added tensorflow dense convolution templates
This commit is contained in:
@@ -5,7 +5,7 @@ if(${TensorFlow_FOUND})
|
||||
include_directories("${CUDA_HOME}/include")
|
||||
link_directories(${TF_LIB})
|
||||
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=${TF_ABI})
|
||||
add_library(tf_blocksparse SHARED dot.cpp)
|
||||
add_library(tf_blocksparse SHARED dot.cpp dense_conv)
|
||||
target_link_libraries(tf_blocksparse tensorflow_framework triton)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/run.py
|
||||
${CMAKE_CURRENT_BINARY_DIR}/run.py
|
||||
|
117
examples/python/tensorflow/dense_conv.cpp
Normal file
117
examples/python/tensorflow/dense_conv.cpp
Normal file
@@ -0,0 +1,117 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "triton/driver/buffer.h"
|
||||
#include "triton/driver/backend.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/runtime/jit.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
#include "triton/dnn/gemm.h"
|
||||
#include "triton/dnn/conv.h"
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "tensorflow/core/framework/op.h"
|
||||
#include "tensorflow/core/framework/shape_inference.h"
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
#include "tensorflow/core/util/cuda_kernel_helper.h"
|
||||
#include "tensorflow/core/util/padding.h"
|
||||
#include "tensorflow/core/util/tensor_format.h"
|
||||
#include "tensorflow/core/framework/common_shape_fns.h"
|
||||
|
||||
using namespace tensorflow;
|
||||
using GPUDevice = Eigen::GpuDevice;
|
||||
|
||||
//torch::Tensor conv_common(
|
||||
// int32_t B, int32_t C, int32_t D, int32_t H, int32_t W,
|
||||
// int32_t T, int32_t R, int32_t S, int32_t NF,
|
||||
// int32_t stride_d, int32_t stride_h, int32_t stride_w,
|
||||
// int32_t pad_d, int32_t pad_h, int32_t pad_w,
|
||||
// triton::dnn::conv::type ty,
|
||||
// torch::Tensor torcha, torch::Tensor torchb, torch::Tensor torchbias,
|
||||
// bool autotune = false
|
||||
// ) {
|
||||
|
||||
//}
|
||||
|
||||
class DenseConvOp : public OpKernel {
|
||||
public:
|
||||
explicit DenseConvOp(OpKernelConstruction* context) : OpKernel(context) {
|
||||
}
|
||||
|
||||
void Compute(OpKernelContext* context){
|
||||
// get device/stream
|
||||
GPUDevice device = context->eigen_device<GPUDevice>();
|
||||
triton::driver::cu_stream sstream(device.stream(), false);
|
||||
triton::driver::context* ctx = sstream.context();
|
||||
triton::driver::stream* stream = &sstream;
|
||||
// get inputs
|
||||
const Tensor& tfa = context->input(0);
|
||||
const Tensor& tfb = context->input(1);
|
||||
// get shapes
|
||||
int32_t B = tfa.dim_size(0);
|
||||
int32_t Ca = tfa.dim_size(1);
|
||||
int32_t D = 1;
|
||||
int32_t H = tfa.dim_size(2);
|
||||
int32_t W = tfa.dim_size(3);
|
||||
int32_t Cb = tfb.dim_size(0);
|
||||
int32_t T = 1;
|
||||
int32_t R = tfb.dim_size(1);
|
||||
int32_t S = tfb.dim_size(2);
|
||||
int32_t NF = tfb.dim_size(3);
|
||||
assert(Ca == Cb);
|
||||
int32_t C = Ca;
|
||||
int32_t stride_d = 1, stride_h = 1, stride_w = 1;
|
||||
int32_t pad_d = 0, pad_h = 0, pad_w = 0;
|
||||
bool has_bias = false;
|
||||
|
||||
// get conv configuration
|
||||
triton::dnn::conv configuration(B, C, D, H, W, T, R, S, NF,
|
||||
stride_d, stride_h, stride_w,
|
||||
pad_d, pad_h, pad_w,
|
||||
1, 1, 1,
|
||||
triton::dnn::conv::FPROP, has_bias);
|
||||
|
||||
// Bind memory
|
||||
triton::driver::cu_buffer a(ctx, (CUdeviceptr)tfa.flat<float>().data(), false);
|
||||
triton::driver::cu_buffer b(ctx, (CUdeviceptr)tfb.flat<float>().data(), false);
|
||||
// triton::driver::cu_buffer cubias(ctx, (CUdeviceptr)torchbias.storage().data(), false);
|
||||
// triton::driver::buffer* bias = has_bias ? &cubias : nullptr;
|
||||
triton::driver::buffer* bias = nullptr;
|
||||
|
||||
// allocate output
|
||||
auto c_shapes = configuration.c_shapes();
|
||||
Tensor* tfc = nullptr;
|
||||
TensorShape out_shape({c_shapes[0], c_shapes[1], c_shapes[2], c_shapes[3]});
|
||||
OP_REQUIRES_OK(context, context->allocate_output(0, out_shape, &tfc));
|
||||
triton::driver::cu_buffer c(ctx, (CUdeviceptr)tfc->flat<float>().data(), false);
|
||||
|
||||
// benchmark a given convolution kernel
|
||||
triton::jit jit(ctx);
|
||||
auto benchmark = [&](triton::driver::kernel* kernel,
|
||||
triton::jit::launch_information info) {
|
||||
configuration.init(stream, (triton::driver::cu_module*)kernel->module());
|
||||
unsigned TM = info.global_range_size[0];
|
||||
unsigned TN = info.global_range_size[1];
|
||||
unsigned nthreads = info.num_threads;
|
||||
unsigned GZ = jit.get_int("GZ");
|
||||
configuration.enqueue(stream, kernel, &a, &b, &c, bias, TM, TN, GZ, nthreads);
|
||||
stream->synchronize();
|
||||
double ts = triton::tools::bench([&](){ configuration.enqueue(stream, kernel, &a, &b, &c, bias, TM, TN, GZ, nthreads); },
|
||||
[&](){ stream->synchronize(); }, stream->context()->device());
|
||||
return configuration.get_nflops() / ts * 1e-3;
|
||||
};
|
||||
|
||||
std::ostringstream oss;
|
||||
configuration.src(oss);
|
||||
std::string src = oss.str();
|
||||
|
||||
triton::jit::tune_res_t best = jit.autotune("conv", src.c_str(), benchmark);
|
||||
jit.add_module("conv", src.c_str(), best.params);
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("DenseConv").Device(DEVICE_GPU), DenseConvOp);
|
||||
REGISTER_OP("DenseConv")
|
||||
.Input("a: float32")
|
||||
.Input("b: float32")
|
||||
.Output("c: float32")
|
||||
;
|
@@ -19,9 +19,9 @@
|
||||
using namespace tensorflow;
|
||||
using GPUDevice = Eigen::GpuDevice;
|
||||
|
||||
class BlockSparseGemmOp : public OpKernel {
|
||||
class DotOp : public OpKernel {
|
||||
public:
|
||||
explicit BlockSparseGemmOp(OpKernelConstruction* context) : OpKernel(context) {
|
||||
explicit DotOp(OpKernelConstruction* context) : OpKernel(context) {
|
||||
}
|
||||
|
||||
void Compute(OpKernelContext* context){
|
||||
@@ -52,7 +52,6 @@ class BlockSparseGemmOp : public OpKernel {
|
||||
triton::driver::cu_buffer db(ctx, (CUdeviceptr)b.flat<Eigen::half>().data(), false);
|
||||
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)c->flat<float>().data(), false);
|
||||
triton::driver::cu_buffer dlocks(ctx, (CUdeviceptr)locks.flat<int32_t>().data(), false);
|
||||
stream->synchronize();
|
||||
// benchmark a given matrix multiplication kernel
|
||||
auto benchmark = [&](triton::driver::kernel* kernel,
|
||||
triton::jit::launch_information info) {
|
||||
@@ -85,7 +84,7 @@ class BlockSparseGemmOp : public OpKernel {
|
||||
private:
|
||||
};
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("Dot").Device(DEVICE_GPU), BlockSparseGemmOp);
|
||||
REGISTER_KERNEL_BUILDER(Name("Dot").Device(DEVICE_GPU), DotOp);
|
||||
REGISTER_OP("Dot")
|
||||
.Input("a: float16")
|
||||
.Input("b: float16")
|
||||
|
@@ -6,24 +6,40 @@ data_files_path = tf.resource_loader.get_data_files_path()
|
||||
library_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
|
||||
|
||||
M, N, K = 128,128,128
|
||||
a = tf.placeholder(tf.float16, shape=[M, K])
|
||||
b = tf.placeholder(tf.float16, shape=[N, K])
|
||||
locks = tf.placeholder(tf.int32, shape=[4096])
|
||||
# c = tf.matmul(a, b, transpose_a=True)
|
||||
c = module.dot(a, b, locks)
|
||||
def run_dot():
|
||||
M, N, K = 128,128,128
|
||||
a = tf.placeholder(tf.float16, shape=[M, K])
|
||||
b = tf.placeholder(tf.float16, shape=[N, K])
|
||||
locks = tf.placeholder(tf.int32, shape=[4096])
|
||||
# c = tf.matmul(a, b, transpose_a=True)
|
||||
c = module.dot(a, b, locks)
|
||||
# Reference
|
||||
ha = np.random.rand(M, K).astype(np.float16)
|
||||
hb = np.random.rand(N, K).astype(np.float16)
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
|
||||
a: ha,
|
||||
b: hb})[0]
|
||||
# Test
|
||||
hresult = np.dot(ha.T, hb).T
|
||||
dif = np.abs(result - hresult)
|
||||
print("dif: %f" % np.max(dif))
|
||||
|
||||
# Reference
|
||||
ha = np.random.rand(M, K).astype(np.float16)
|
||||
hb = np.random.rand(N, K).astype(np.float16)
|
||||
def run_conv():
|
||||
BS, C, H, W = 16, 32, 32, 32
|
||||
R, S, NF = 3, 3, 32
|
||||
a = tf.placeholder(tf.float32, shape=[BS, C, H, W])
|
||||
b = tf.placeholder(tf.float32, shape=[C, R, S, NF])
|
||||
c = module.dense_conv(a, b)
|
||||
# Reference
|
||||
ha = np.random.rand(BS, C, H, W)
|
||||
hb = np.random.rand(C, R, S, NF)
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {a: ha,
|
||||
b: hb})[0]
|
||||
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
|
||||
a: ha,
|
||||
b: hb})[0]
|
||||
|
||||
hresult = np.dot(ha.T, hb).T
|
||||
dif = np.abs(result - hresult)
|
||||
print("dif: %f" % np.max(dif))
|
||||
run_conv()
|
||||
|
Reference in New Issue
Block a user