[examples] added tensorflow dense convolution templates
This commit is contained in:
@@ -6,24 +6,40 @@ data_files_path = tf.resource_loader.get_data_files_path()
|
||||
library_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
|
||||
|
||||
M, N, K = 128,128,128
|
||||
a = tf.placeholder(tf.float16, shape=[M, K])
|
||||
b = tf.placeholder(tf.float16, shape=[N, K])
|
||||
locks = tf.placeholder(tf.int32, shape=[4096])
|
||||
# c = tf.matmul(a, b, transpose_a=True)
|
||||
c = module.dot(a, b, locks)
|
||||
def run_dot():
|
||||
M, N, K = 128,128,128
|
||||
a = tf.placeholder(tf.float16, shape=[M, K])
|
||||
b = tf.placeholder(tf.float16, shape=[N, K])
|
||||
locks = tf.placeholder(tf.int32, shape=[4096])
|
||||
# c = tf.matmul(a, b, transpose_a=True)
|
||||
c = module.dot(a, b, locks)
|
||||
# Reference
|
||||
ha = np.random.rand(M, K).astype(np.float16)
|
||||
hb = np.random.rand(N, K).astype(np.float16)
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
|
||||
a: ha,
|
||||
b: hb})[0]
|
||||
# Test
|
||||
hresult = np.dot(ha.T, hb).T
|
||||
dif = np.abs(result - hresult)
|
||||
print("dif: %f" % np.max(dif))
|
||||
|
||||
# Reference
|
||||
ha = np.random.rand(M, K).astype(np.float16)
|
||||
hb = np.random.rand(N, K).astype(np.float16)
|
||||
def run_conv():
|
||||
BS, C, H, W = 16, 32, 32, 32
|
||||
R, S, NF = 3, 3, 32
|
||||
a = tf.placeholder(tf.float32, shape=[BS, C, H, W])
|
||||
b = tf.placeholder(tf.float32, shape=[C, R, S, NF])
|
||||
c = module.dense_conv(a, b)
|
||||
# Reference
|
||||
ha = np.random.rand(BS, C, H, W)
|
||||
hb = np.random.rand(C, R, S, NF)
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {a: ha,
|
||||
b: hb})[0]
|
||||
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
|
||||
a: ha,
|
||||
b: hb})[0]
|
||||
|
||||
hresult = np.dot(ha.T, hb).T
|
||||
dif = np.abs(result - hresult)
|
||||
print("dif: %f" % np.max(dif))
|
||||
run_conv()
|
||||
|
Reference in New Issue
Block a user