[examples/pytorch] Fixed issues in backward pass of conv

This commit is contained in:
Philippe Tillet
2019-05-19 01:31:08 -04:00
parent b2b55c52c9
commit f33a1f3fe3
9 changed files with 541 additions and 71 deletions

View File

@@ -10,12 +10,12 @@ int main() {
// initialize default compute device
auto context = triton::driver::backend::contexts::get_default();
triton::jit jit(context);
triton::dnn::conv::type ty = triton::dnn::conv::FPROP;
triton::dnn::conv::type ty = triton::dnn::conv::BPROP;
// initialization
int32_t B = 4, NF = 32;
int32_t D = 1, H = 56, W = 56;
int32_t NC = 32, T = 1, R = 3, S = 3;
int32_t pad_d = 0, pad_h = 1, pad_w = 1;
int32_t pad_d = 0, pad_h = 0, pad_w = 0;
triton::dnn::conv configuration(B, NC, D, H, W, T, R, S, NF, 1, 1, 1, pad_d, pad_h, pad_w, ty);
// convolution configuration
std::vector<float> hc(configuration.c_size());

View File

@@ -0,0 +1,117 @@
import argparse
import triton
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
torch.manual_seed(0)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, (5,5))
self.conv2 = nn.Conv2d(20, 50, (5,5))
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
if (args.save_model):
torch.save(model.state_dict(),"mnist_cnn.pt")
if __name__ == '__main__':
main()

View File

@@ -86,7 +86,8 @@ torch::Tensor conv_common(
torch::Tensor conv_fprop(
const torch::Tensor data,
const torch::Tensor weight) {
const torch::Tensor weight,
int64_t pad_h, int64_t pad_w) {
// Check
CHECK_INPUT(data);
CHECK_INPUT(weight);
@@ -104,7 +105,7 @@ torch::Tensor conv_fprop(
const int32_t NF = weight.size(3);
// Configuration
const int32_t stride_d = 1, stride_h = 1, stride_w = 1;
const int32_t pad_d = 0, pad_h = 1, pad_w = 1;
const int32_t pad_d = 0;
// Check
AT_CHECK(Ci == Cf, "Number of channels in data and weights must match");
return conv_common(B, Ci, D, H, W, T, R, S, NF, stride_d, stride_h, stride_w, pad_d, pad_h, pad_w, triton::dnn::conv::FPROP, data, weight);
@@ -112,7 +113,8 @@ torch::Tensor conv_fprop(
torch::Tensor conv_bprop(
const torch::Tensor derror,
const torch::Tensor weight){
const torch::Tensor weight,
int64_t pad_h, int64_t pad_w){
// Check
CHECK_INPUT(derror);
CHECK_INPUT(weight);
@@ -131,10 +133,12 @@ torch::Tensor conv_bprop(
// Compute M, P, Q
const int32_t upsample_d = 1, upsample_h = 1, upsample_w = 1;
const int32_t stride_d = 1, stride_h = 1, stride_w = 1;
const int32_t pad_d = 0, pad_h = 1, pad_w = 1;
const int32_t D = M*stride_d + T - 1 - 2*pad_d + stride_d - 1 / upsample_d;
const int32_t H = P*stride_d + R - 1 - 2*pad_h + stride_h - 1 / upsample_h;
const int32_t W = Q*stride_d + S - 1 - 2*pad_w + stride_w - 1 / upsample_w;
int32_t pad_d = 0;
const int32_t D = (M*stride_d + T - 1 - 2*pad_d - stride_d + 1) / upsample_d;
const int32_t H = (P*stride_d + R - 1 - 2*pad_h - stride_h + 1) / upsample_h;
const int32_t W = (Q*stride_d + S - 1 - 2*pad_w - stride_w + 1) / upsample_w;
// Check
AT_CHECK(Ki == Kw, "Number of channels in error and weights must match");
return conv_common(B, C, D, H, W, T, R, S, Kw, stride_d, stride_h, stride_w, pad_d, pad_h, pad_w, triton::dnn::conv::BPROP, derror, weight);
@@ -142,17 +146,18 @@ torch::Tensor conv_bprop(
torch::Tensor conv_wgrad(
const torch::Tensor data,
const torch::Tensor derror
const torch::Tensor derror,
int64_t pad_h, int64_t pad_w
){
// Check
CHECK_INPUT(data);
CHECK_INPUT(derror);
// Unpack data shapes
const int32_t Ba = derror.size(0);
const int32_t C = derror.size(1);
const int32_t Ba = data.size(0);
const int32_t C = data.size(1);
const int32_t D = 1;
const int32_t H = derror.size(2);
const int32_t W = derror.size(3);
const int32_t H = data.size(2);
const int32_t W = data.size(3);
// Unpack error shapes
const int32_t Bb = derror.size(0);
const int32_t K = derror.size(1);
@@ -162,10 +167,12 @@ torch::Tensor conv_wgrad(
// Compute M, P, Q
const int32_t upsample_d = 1, upsample_h = 1, upsample_w = 1;
const int32_t stride_d = 1, stride_h = 1, stride_w = 1;
const int32_t pad_d = 0, pad_h = 1, pad_w = 1;
const int32_t T = (D - M*stride_d + 1 + 2*pad_d - stride_d + 1)*upsample_d;
const int32_t R = (H - P*stride_h + 1 + 2*pad_h - stride_h + 1)*upsample_h;
const int32_t S = (W - Q*stride_w + 1 + 2*pad_w - stride_w + 1)*upsample_w;
const int32_t pad_d = 0;
const int32_t T = (D - M*stride_d + 1 + 2*pad_d + stride_d - 1)*upsample_d;
const int32_t R = (H - P*stride_h + 1 + 2*pad_h + stride_h - 1)*upsample_h;
const int32_t S = (W - Q*stride_w + 1 + 2*pad_w + stride_w - 1)*upsample_w;
// Check
AT_CHECK(Ba == Bb, "Number of channels in error and weights must match");
return conv_common(Ba, C, D, H, W, T, R, S, K, stride_d, stride_h, stride_w, pad_d, pad_h, pad_w, triton::dnn::conv::WGRAD, data, derror);

View File

@@ -1,50 +0,0 @@
import torch
import time
torch.manual_seed(0)
class TritonConv(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight):
ctx.save_for_backward(input, weight)
output = torch.ops.triton.conv_fprop(input, weight)
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
grad_input = grad_weight = None
if ctx.needs_input_grad[0]:
grad_input = torch.ops.triton.conv_bprop(grad_output, weight)
if ctx.needs_input_grad[1]:
grad_weight = torch.ops.triton.conv_wgrad(input, grad_output)
return grad_input, grad_weight
torch.ops.load_library("/home/philippe/Development/triton/build/examples/python/pytorch/libtorch_triton.so")
x = torch.autograd.Variable(torch.randn(16, 64, 8, 8).cuda(), requires_grad=True)
w = torch.autograd.Variable(torch.randn(64, 3, 3, 64).cuda(), requires_grad=True)
cuw = torch.autograd.Variable(w.permute(3,0,1,2).cuda(), requires_grad=True)
y_target = torch.autograd.Variable(torch.randn(16, 64, 8, 8).cuda(), requires_grad=True)
def run(x, w, conv):
y = conv(x, w)
loss = (y - y_target).norm(2)
loss.backward()
return loss, y.clone(), x.grad.clone(), w.grad.clone()
ttyloss, tty, ttdx, ttdw = run(x, w, TritonConv.apply)
x.grad.zero_()
w.grad.zero_()
culoss, cuy, cudx, cudw = run(x, cuw, lambda x, w: torch.nn.functional.conv2d(x, w, padding=1))
print((tty - cuy).norm(2))
print((ttdx - cudx).norm(2))
print((ttdw.permute(3,0,1,2) - cudw).norm(2))
#print(ttdx)
#print(cudx)
#print(ttdw)
#print(cudw)
#print((ttdw.permute(3,0,1,2) - cudw).norm(2))

View File

@@ -0,0 +1,22 @@
import torch
import triton
x = torch.autograd.Variable(torch.randn(16, 64, 8, 8).cuda(), requires_grad=True)
w = torch.autograd.Variable(torch.randn(64, 3, 3, 64).cuda(), requires_grad=True)
cuw = torch.autograd.Variable(w.permute(3,0,1,2).cuda(), requires_grad=True)
y_target = torch.autograd.Variable(torch.randn(16, 64, 6, 6).cuda(), requires_grad=True)
def run(x, w, conv):
y = conv(x, w)
loss = (y - y_target).norm(2)
loss.backward()
return loss, y.clone(), x.grad.clone(), w.grad.clone()
ttyloss, tty, ttdx, ttdw = run(x, w, lambda x, w: triton.ConvFunction.apply(x, w, 0))
x.grad.zero_()
w.grad.zero_()
culoss, cuy, cudx, cudw = run(x, cuw, lambda x, w: torch.nn.functional.conv2d(x, w, padding=0))
print((tty - cuy).norm(2))
print((ttdx - cudx).norm(2))
print((ttdw.permute(3,0,1,2) - cudw).norm(2))

View File

@@ -0,0 +1,46 @@
import torch
import math
torch.ops.load_library("/home/philippe/Development/triton/build/examples/python/pytorch/libtorch_triton.so")
class ConvFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, padding):
ctx.save_for_backward(input, weight)
ctx.padding = padding
output = torch.ops.triton.conv_fprop(input, weight, padding, padding)
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
padding = ctx.padding
grad_input = grad_weight = None
if ctx.needs_input_grad[0]:
grad_input = torch.ops.triton.conv_bprop(grad_output, weight, padding, padding)
if ctx.needs_input_grad[1]:
grad_weight = torch.ops.triton.conv_wgrad(input, grad_output, padding, padding)
return grad_input, grad_weight, None
class Conv2d(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding = 0):
super(Conv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
self.weight = torch.nn.Parameter(torch.Tensor(
in_channels, kernel_size[0], kernel_size[1], out_channels))
self.reset_parameters()
def forward(self, input):
return ConvFunction.apply(input, self.weight, self.padding)
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)

View File

@@ -0,0 +1,116 @@
#ifndef TDL_INCLUDE_JIT_H
#define TDL_INCLUDE_JIT_H
#include <string>
#include <memory>
#include "llvm/IR/LLVMContext.h"
#include "triton/ir/context.h"
#include "triton/ir/print.h"
#include "triton/driver/module.h"
#include "triton/driver/kernel.h"
#include "triton/codegen/selection.h"
#include "triton/codegen/tune.h"
#include "triton/codegen/optimize_dot.h"
#include "triton/codegen/optimize_cse.h"
#include "triton/codegen/optimize_trans.h"
#include "triton/codegen/shmem_allocation.h"
#include "triton/codegen/shmem_liveness.h"
#include "triton/codegen/shmem_info.h"
#include "triton/codegen/shmem_barriers.h"
#include "triton/codegen/target.h"
#include "triton/codegen/vectorize.h"
#include <functional>
namespace llvm {
class Module;
}
namespace triton {
namespace codegen{
class tune;
}
namespace ir {
class module;
class context;
class metaparameter;
}
class jit {
public:
struct launch_information{
std::vector<unsigned> global_range_size;
unsigned num_threads;
};
typedef std::function<double(driver::kernel*, launch_information)> benchmark_t;
struct passes_wrapper {
passes_wrapper(codegen::target* target)
: shmem_liveness(&shmem_info),
shmem_allocation(&shmem_liveness, &shmem_info),
shmem_barriers(&shmem_allocation, &shmem_info),
vectorize(&tune),
selection(&shmem_allocation, &tune, &shmem_info, target),
optimize_dot(&tune),
optimize_cse(),
optimize_trans(),
target_(target) { }
void target_independent(ir::module &module) {
optimize_dot.run(module);
optimize_trans.run(module);
}
void target_dependent(ir::module &module) {
if(target_->is_gpu()){
shmem_info.run(module);
shmem_liveness.run(module);
shmem_allocation.run();
shmem_barriers.run(module);
}
vectorize.run(module);
}
codegen::tune tune;
codegen::shmem_info shmem_info;
codegen::shmem_liveness shmem_liveness;
codegen::shmem_allocation shmem_allocation;
codegen::shmem_barriers shmem_barriers;
codegen::vectorize vectorize;
codegen::selection selection;
codegen::optimize_dot optimize_dot;
codegen::optimize_cse optimize_cse;
codegen::optimize_trans optimize_trans;
codegen::target* target_;
};
private:
std::string compute_data_layout(bool is_64bit = true, bool use_short_pointers = true);
std::unique_ptr<llvm::Module> make_llvm_module(triton::ir::module &module, passes_wrapper &passes);
std::unique_ptr<ir::module> make_triton_module(const char* name, const char* src);
public:
jit(driver::context* context);
~jit();
void autotune(const char* name, const char* src, benchmark_t benchmark);
void add_module(ir::module &module, const std::vector<unsigned>& params = {});
void add_module(const char* name, const char* src, const std::vector<unsigned>& params = {});
driver::kernel* get_function(const char* name);
launch_information get_launch_info(const char* name);
unsigned get_int(const char* name);
private:
std::map<std::string, driver::module*> modules_;
driver::context* driver_context_;
llvm::LLVMContext llvm_context_;
ir::context triton_context_;
std::map<std::string, launch_information> launch_info_map_;
std::map<std::string, unsigned> global_ints_;
std::shared_ptr<triton::codegen::target> target_;
};
}
#endif

View File

@@ -24,10 +24,13 @@ conv::conv(int B, int NC,
shapes_c_ = {NB_, NF_, CD_, CH_, CW_};
// swap a and c for bprop
if(ty_ == BPROP){
pad_d_ = (CD_ - AD_ + BD_ - 1) / 2;
pad_h_ = (CH_ - AH_ + BH_ - 1) / 2;
pad_w_ = (CW_ - AW_ + BW_ - 1) / 2;
std::swap(AD_, CD_);
std::swap(AH_, CH_);
std::swap(AW_, CW_);
shapes_a_.swap(shapes_c_);
pad_d_ = (CD_*stride_d_ - AD_*upsample_d_ + BD_ - 1 - stride_d_ + 1)/2;
pad_h_ = (CH_*stride_h_ - AH_*upsample_h_ + BH_ - 1 - stride_h_ + 1)/2;
pad_w_ = (CW_*stride_w_ - AW_*upsample_w_ + BW_ - 1 - stride_w_ + 1)/2;
}
// swap b and c for wgrad
if(ty_ == WGRAD){

209
lib/runtime/jit.cpp Normal file
View File

@@ -0,0 +1,209 @@
#include <string>
#include "triton/ast/ast.h"
#include "triton/codegen/target.h"
#include "triton/ir/context.h"
#include "triton/ir/context_impl.h"
#include "triton/driver/device.h"
#include "triton/driver/error.h"
#include "triton/runtime/jit.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/Analysis/LoopPass.h"
typedef struct yy_buffer_state * YY_BUFFER_STATE;
extern int yyparse();
extern YY_BUFFER_STATE yy_scan_string(const char * str);
extern void yy_delete_buffer(YY_BUFFER_STATE buffer);
using triton::ast::translation_unit;
extern translation_unit *ast_root;
namespace triton {
void loop_nest(std::vector<size_t> const & ranges, std::function<void(std::vector<size_t> const &)> const & f){
size_t D = ranges.size();
std::vector<size_t> values(D, 0);
// Start with innermost loop
size_t i = D - 1;
while(true){
//Execute function
f(values);
//Increment counters
while(values[i]++ == ranges[i] - 1){
if(i == 0)
return;
values[i--] = 0;
}
i = D - 1;
}
}
template<class T>
void loop_nest(std::vector<std::vector<T>> const & iterates, std::function<void(std::vector<T>)> const & f){
//Ranges to iterate over
std::vector<size_t> ranges;
for(auto const & x: iterates)
ranges.push_back(x.size());
//Proxy function
auto proxy = [&](std::vector<size_t> const & idx){
std::vector<T> x(iterates.size());
for(size_t i = 0; i < x.size(); ++i)
x[i] = iterates[i][idx[i]];
f(x);
};
//Iterate
loop_nest(ranges, proxy);
}
std::unique_ptr<llvm::Module> jit::make_llvm_module(ir::module &module, passes_wrapper &passes) {
llvm::Module* result = new llvm::Module(module.get_name(), llvm_context_);
passes.selection.run(module, *result);
// launch information
launch_information& info = launch_info_map_[result->getName()];
info.global_range_size.clear();
for(unsigned i = 0; i < passes.tune.get_num_global_range(); i++)
info.global_range_size.push_back(passes.tune.get_global_range_size(i));
info.num_threads = passes.tune.get_num_threads();
return std::unique_ptr<llvm::Module>(result);
}
std::unique_ptr<ir::module> jit::make_triton_module(const char *name, const char *src) {
// create AST from Triton-C source
YY_BUFFER_STATE buffer = yy_scan_string(src);
yyparse();
yy_delete_buffer(buffer);
translation_unit *program = ast_root;
// create Triton-IR from AST
ir::module* module = new ir::module(name, triton_context_);
program->codegen(module);
return std::unique_ptr<ir::module>(module);
}
jit::jit(driver::context *context): driver_context_(context),
target_(context->device()->make_target()) { }
jit::~jit(){ }
void jit::autotune(const char *name, const char *src, benchmark_t benchmark) {
// find metaparameters
auto ptt_module = make_triton_module(name, src);
ir::module &tt_module = *ptt_module;
// set parameters
passes_wrapper passes(target_.get());
passes.target_independent(tt_module);
passes.tune.run(tt_module);
auto mps = passes.tune.get_params(tt_module);
// create parameter ranges
std::vector<std::vector<unsigned>> ranges;
for(ir::metaparameter *mp: mps)
ranges.push_back(mp->get_space());
// std::cout << ranges.size() << std::endl;
// iterate over parameters
unsigned i;
double best = 0;
loop_nest<unsigned>(ranges, [&](const std::vector<unsigned> params){
std::map<ir::value*, std::vector<std::string>> errors;
i = 0;
for(ir::metaparameter *mp: mps)
mp->set_value(params[i++]);
passes.target_independent(tt_module);
passes.tune.init(tt_module);
if(!passes.tune.check_constraints(errors))
return;
// Deep copy of the module and tuner
auto ptt_module = make_triton_module(name, src);
ir::module &tt_module = *ptt_module;
passes_wrapper passes(target_.get());
passes.target_independent(tt_module);
passes.tune.run(tt_module);
i = 0;
for(ir::metaparameter* mp: passes.tune.get_params(tt_module)){
mp->set_value(params[i++]);
}
passes.tune.init(tt_module);
passes.target_dependent(tt_module);
driver::device* device = driver_context_->device();
if(passes.shmem_allocation.get_allocated_size() > device->max_shared_memory())
return;
if(passes.tune.get_num_threads() > device->max_threads_per_block())
return;
// Compile
auto ll_module = make_llvm_module(tt_module, passes);
std::unique_ptr<driver::module> module(driver::module::create(driver_context_, &*ll_module));
std::unique_ptr<driver::kernel> kernel(driver::kernel::create(module.get(), name));
launch_information info = launch_info_map_.at(name);
for(unsigned p: params)
std::cout << p << " " << std::flush;
// add globals
for(auto x: tt_module.globals())
global_ints_[x.first] = ((ir::metaparameter*)x.second)->get_value();
modules_.insert({name, module.get()});
double perf;
perf = benchmark(kernel.get(), info);
best = std::max(perf, best);
std::cout << perf << " [ " << best << " ] " << std::endl;
modules_.erase(name);
});
}
void jit::add_module(ir::module &tt_module, const std::vector<unsigned> &params) {
// set parameters
passes_wrapper passes(target_.get());
passes.target_independent(tt_module);
passes.tune.run(tt_module);
unsigned i = 0;
for(ir::metaparameter* mp: passes.tune.get_params(tt_module))
mp->set_value(params[i++]);
passes.tune.init(tt_module);
passes.target_dependent(tt_module);
// check constraints
std::map<ir::value*, std::vector<std::string>> errors;
passes.tune.check_constraints(errors);
for(auto x: errors){
std::cout << x.first << std::endl;
for(auto str: x.second)
std::cout << str << std::endl;
}
if(errors.size())
throw std::runtime_error("invalid parameters");
// triton module -> llvm module
auto ll_module = make_llvm_module(tt_module, passes);
// llvm module -> machine code
std::string name = tt_module.get_name();
modules_.insert({name, driver::module::create(driver_context_, &*ll_module)});
// add globals
for(auto x: tt_module.globals())
global_ints_[x.first] = ((ir::metaparameter*)x.second)->get_value();
}
void jit::add_module(const char *name, const char *src, const std::vector<unsigned> &params) {
auto ptt_module = make_triton_module(name, src);
add_module(*ptt_module, params);
}
driver::kernel *jit::get_function(const char *name) {
return driver::kernel::create(modules_.at(name), name);
}
jit::launch_information jit::get_launch_info(const char *name) {
return launch_info_map_.at(name);
}
unsigned jit::get_int(const char *name){
return global_ints_.at(name);
}
}