[dnn/shift-conv] added and tested NCHW layout
This commit is contained in:
@@ -62,7 +62,7 @@ def run_shift():
|
||||
R, S, F = 3, 3, 32
|
||||
stride_h, stride_w = 2, 2
|
||||
np.random.seed(2)
|
||||
a = tf.placeholder(tf.float32, shape=[C, H, W, B])
|
||||
a = tf.placeholder(tf.float32, shape=[B, C, H, W])
|
||||
b = tf.placeholder(tf.float32, shape=[C, F])
|
||||
hshift_h = np.random.randint(- (R//2), R//2 + 1, size=C, dtype=np.int32)
|
||||
hshift_w = np.random.randint(- (S//2), R//2 + 1, size=C, dtype=np.int32)
|
||||
@@ -70,13 +70,13 @@ def run_shift():
|
||||
#hshift_w = np.zeros(C, dtype=np.int32)
|
||||
c = module.shift_conv(a, b, stride_h=stride_h, stride_w=stride_w, shift_h=tf.make_tensor_proto(hshift_h), shift_w=tf.make_tensor_proto(hshift_w))
|
||||
# feed values
|
||||
ha = np.random.rand(C, H, W, B)
|
||||
ha = np.random.rand(B, C, H, W)
|
||||
hb = np.random.rand(C, F)
|
||||
#ha = np.ones((C, H, W, B), dtype=np.float32)
|
||||
#ha = np.ones((B, C, H, W), dtype=np.float32)
|
||||
#hb = np.ones((C, F), dtype=np.float32)
|
||||
sess = tf.InteractiveSession()
|
||||
# test
|
||||
grads = tf.test.compute_gradient([a, b], [(C, H, W, B), (C, F)], c, (F, H//stride_h, W//stride_w, B),
|
||||
grads = tf.test.compute_gradient([a, b], [(B, C, H, W), (C, F)], c, (B, F, H//stride_h, W//stride_w),
|
||||
extra_feed_dict = {a: ha, b: hb})
|
||||
dw_t, dw_n = grads[1]
|
||||
dx_t, dx_n = grads[0]
|
||||
|
@@ -22,7 +22,7 @@ using GPUDevice = Eigen::GpuDevice;
|
||||
template<triton::dnn::shift::type OP>
|
||||
class ShiftConvOp : public OpKernel {
|
||||
public:
|
||||
explicit ShiftConvOp(OpKernelConstruction* context) : OpKernel(context) {
|
||||
explicit ShiftConvOp(OpKernelConstruction* context) : OpKernel(context), layout_(triton::dnn::shift::NCHW) {
|
||||
context->GetAttr("shift_h", &h_shift_h_);
|
||||
context->GetAttr("shift_w", &h_shift_w_);
|
||||
context->GetAttr("stride_h", &stride_h_);
|
||||
@@ -31,20 +31,32 @@ public:
|
||||
S_ = 3;
|
||||
}
|
||||
|
||||
void ExtractShapes(const Tensor &x, int64_t &C, int64_t &H, int64_t &W, int64_t &B) {
|
||||
if(layout_ == triton::dnn::shift::CHWN){
|
||||
C = x.dim_size(0);
|
||||
H = x.dim_size(1);
|
||||
W = x.dim_size(2);
|
||||
B = x.dim_size(3);
|
||||
}
|
||||
else if(layout_ == triton::dnn::shift::NCHW){
|
||||
B = x.dim_size(0);
|
||||
C = x.dim_size(1);
|
||||
H = x.dim_size(2);
|
||||
W = x.dim_size(3);
|
||||
}
|
||||
else{
|
||||
throw std::runtime_error("unsupported layout");
|
||||
}
|
||||
}
|
||||
|
||||
void FillShapes(OpKernelContext* context,
|
||||
int64_t &C, int64_t &H, int64_t &W, int64_t &B, int64_t &F,
|
||||
const Tensor& tf_a, const Tensor& tf_b) {
|
||||
if(OP == triton::dnn::shift::WGRAD) {
|
||||
// shapes for a
|
||||
F = tf_a.dim_size(0);
|
||||
int64_t Ha = tf_a.dim_size(1);
|
||||
int64_t Wa = tf_a.dim_size(2);
|
||||
int64_t Ba = tf_a.dim_size(3);
|
||||
// shapes for b
|
||||
C = tf_b.dim_size(0);
|
||||
int64_t Hb = tf_b.dim_size(1);
|
||||
int64_t Wb = tf_b.dim_size(2);
|
||||
int64_t Bb = tf_b.dim_size(3);
|
||||
int64_t Ha, Wa, Ba;
|
||||
int64_t Hb, Wb, Bb;
|
||||
ExtractShapes(tf_a, F, Ha, Wa, Ba);
|
||||
ExtractShapes(tf_b, C, Hb, Wb, Bb);
|
||||
OP_REQUIRES(context, Ha*stride_h_ == Hb, tensorflow::errors::InvalidArgument("operands must have the same image height"));
|
||||
OP_REQUIRES(context, Wa*stride_w_ == Wb, tensorflow::errors::InvalidArgument("operands must have the same image width"));
|
||||
OP_REQUIRES(context, Ba == Bb, tensorflow::errors::InvalidArgument("operands must have the same batch size"));
|
||||
@@ -54,10 +66,8 @@ public:
|
||||
}
|
||||
else {
|
||||
// shapes for a
|
||||
int64_t Ca = tf_a.dim_size(0);
|
||||
H = tf_a.dim_size(1);
|
||||
W = tf_a.dim_size(2);
|
||||
B = tf_a.dim_size(3);
|
||||
int64_t Ca;
|
||||
ExtractShapes(tf_a, Ca, H, W, B);
|
||||
if(OP == triton::dnn::shift::BPROP){
|
||||
H *= stride_h_;
|
||||
W *= stride_w_;
|
||||
@@ -96,7 +106,7 @@ public:
|
||||
triton::dnn::shift shift(B, C, D, H, W, T, R_, S_, F,
|
||||
stride_h_, stride_w_,
|
||||
shift_h_data, shift_w_data,
|
||||
"fp32", "fp32", OP, has_bias);
|
||||
"fp32", "fp32", OP, has_bias, layout_);
|
||||
|
||||
// shapes for c
|
||||
std::vector<int64> c_shapes;
|
||||
@@ -122,6 +132,7 @@ private:
|
||||
int stride_w_;
|
||||
int R_;
|
||||
int S_;
|
||||
triton::dnn::shift::layout_t layout_;
|
||||
};
|
||||
|
||||
REGISTER_KERNEL_BUILDER(Name("ShiftConv").Device(DEVICE_GPU), ShiftConvOp<triton::dnn::shift::FPROP>);
|
||||
|
Reference in New Issue
Block a user