[general] hmma baseline setup

This commit is contained in:
Philippe Tillet
2019-06-05 14:43:38 -07:00
parent 49fcfd6fc7
commit f58c9a4d2b
14 changed files with 50 additions and 33 deletions

View File

@@ -16,7 +16,7 @@ int main() {
triton::jit jit(context);
// matrix multiplication parameters
int32_t M = 512, N = 512, K = 512;
int32_t M = 2048, N = 2048, K = 2048;
std::vector<float> hc(M*N);
std::vector<float> rc(M*N);
std::vector<float> ha(M*K);
@@ -60,7 +60,7 @@ int main() {
// just-in-time compile source-code
std::string src = triton::dnn::gemm::src(AT, BT);
// jit.autotune("matmul",src.c_str(), benchmark);
jit.autotune("matmul",src.c_str(), benchmark);
jit.add_module("matmul", src.c_str(), triton::dnn::gemm::default_params(AT, BT));
triton::driver::kernel* kernel = jit.get_function("matmul");
triton::jit::launch_information info = jit.get_launch_info("matmul");

View File

@@ -4,7 +4,7 @@ if(${TensorFlow_FOUND})
include_directories("${TF_INC}/tensorflow/include")
include_directories("${CUDA_HOME}/include")
link_directories(${TF_LIB})
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=${TF_ABI})
add_library(tf_blocksparse SHARED dot.cpp)
target_link_libraries(tf_blocksparse tensorflow_framework triton)
endif()

View File

@@ -25,7 +25,8 @@ const tunable int32 TN = {16, 32, 64, 128};
const tunable int32 TK = {8};
const tunable int32 GZ = {1};
void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C,
void matmul(restrict read_only fp16 *A, restrict read_only fp16 *B,
fp32 *C,
int32 M, int32 N, int32 K,
int32 lda, int32 ldb, int32 ldc,
int32 *locks, int32 grid0, int32 grid1) {
@@ -39,10 +40,10 @@ void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C,
int32 rem = K % GZ;
K = select(rz < rem, div - 1, div);
int32 offk = select(rz < rem, rz*(div + 1), rz*div + rem);
fp32* pa[TM, TK] = A + (offk + rka[newaxis, :])*lda + rxa[:, newaxis];
fp32* pb[TN, TK] = B + (offk + rkb[newaxis, :])*ldb + ryb[:, newaxis];
fp32 a[TM, TK] = *pa;
fp32 b[TN, TK] = *pb;
fp16* pa[TM, TK] = A + (offk + rka[newaxis, :])*lda + rxa[:, newaxis];
fp16* pb[TN, TK] = B + (offk + rkb[newaxis, :])*ldb + ryb[:, newaxis];
fp16 a[TM, TK] = *pa;
fp16 b[TN, TK] = *pb;
int32 last_a = ((M*K - 1) - (TM*TK + 1)) / lda;
int32 last_b = ((K*N - 1) - (TN*TK + 1)) / ldb;
last_a = last_a / TK * TK;
@@ -60,10 +61,10 @@ void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C,
for(int32 k = bound; k > 0; k = k - 1){
int1 checka[TM, 1] = rxc[:, newaxis] < M;
int1 checkb[TN, 1] = ryc[:, newaxis] < N;
fp32* pa[TM, 1] = A + (offk + K - k)*lda + rxc[:, newaxis];
fp32* pb[TN, 1] = B + (offk + K - k)*ldb + ryc[:, newaxis];
fp32 a[TM, 1] = checka ? *pa : 0;
fp32 b[TN, 1] = checkb ? *pb : 0;
fp16* pa[TM, 1] = A + (offk + K - k)*lda + rxc[:, newaxis];
fp16* pb[TN, 1] = B + (offk + K - k)*ldb + ryc[:, newaxis];
fp16 a[TM, 1] = checka ? *pa : 0;
fp16 b[TN, 1] = checkb ? *pb : 0;
c = dot(a, trans(b), c);
}
int32 ridx = get_range_id(0);
@@ -89,13 +90,6 @@ void matmul(restrict read_only fp32 *A, restrict read_only fp32 *B, fp32 *C,
}
)";
REGISTER_OP("Dot")
.Input("a: T")
.Input("b: T")
.Input("locks: int32")
.Output("c: T")
.Attr("T: {float}")
;
class BlockSparseGemmOp : public OpKernel {
public:
@@ -126,8 +120,8 @@ class BlockSparseGemmOp : public OpKernel {
// initialize default compute device
triton::jit jit(ctx);
// matrix multiplication parameters
triton::driver::cu_buffer da(ctx, (CUdeviceptr)a.flat<float>().data(), false);
triton::driver::cu_buffer db(ctx, (CUdeviceptr)b.flat<float>().data(), false);
triton::driver::cu_buffer da(ctx, (CUdeviceptr)a.flat<Eigen::half>().data(), false);
triton::driver::cu_buffer db(ctx, (CUdeviceptr)b.flat<Eigen::half>().data(), false);
triton::driver::cu_buffer dc(ctx, (CUdeviceptr)c->flat<float>().data(), false);
triton::driver::cu_buffer dlocks(ctx, (CUdeviceptr)locks.flat<int32_t>().data(), false);
stream->synchronize();
@@ -160,4 +154,10 @@ class BlockSparseGemmOp : public OpKernel {
private:
};
REGISTER_KERNEL_BUILDER(Name("Dot").Device(DEVICE_GPU).TypeConstraint<float>("T"), BlockSparseGemmOp);
REGISTER_KERNEL_BUILDER(Name("Dot").Device(DEVICE_GPU), BlockSparseGemmOp);
REGISTER_OP("Dot")
.Input("a: float16")
.Input("b: float16")
.Input("locks: int32")
.Output("c: float32")
;

View File

@@ -3,18 +3,23 @@ import tensorflow as tf
import numpy as np
data_files_path = tf.resource_loader.get_data_files_path()
library_dir = '/home/philippe/Development/triton/build/examples/python/tensorflow'
library_dir = '/home/philippe/development/triton/build/examples/python/tensorflow'
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
M, N, K = 512, 512, 512
a = tf.placeholder(tf.float32, shape=[M, K])
b = tf.placeholder(tf.float32, shape=[N, K])
a = tf.placeholder(tf.float16, shape=[M, K])
b = tf.placeholder(tf.float16, shape=[N, K])
locks = tf.placeholder(tf.int32, shape=[4096])
c = module.block_sparse_mat_mul(a, b, locks)
c = module.dot(a, b, locks)
# Reference
ha = np.random.rand(M, K).astype(np.float16)
hb = np.random.rand(N, K).astype(np.float16)
hresult = np.dot(hb.T, ha)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
a: np.random.rand(M, K),
b: np.random.rand(N, K)})
print(result)
a: ha,
b: hb})
print(result - hresult)

View File

@@ -40,6 +40,7 @@ public:
type *get_int16_ty();
type *get_int32_ty();
type *get_int64_ty();
type *get_half_ty();
type *get_float_ty();
type *get_double_ty();
// Insert

View File

@@ -35,7 +35,7 @@ enum TYPE_T{
VOID_T,
UINT1_T, UINT8_T, UINT16_T, UINT32_T, UINT64_T,
INT1_T, INT8_T, INT16_T, INT32_T, INT64_T,
FLOAT32_T, FLOAT64_T
FLOAT16_T, FLOAT32_T, FLOAT64_T
};
enum STORAGE_SPEC_T{

View File

@@ -52,7 +52,7 @@ STORAGE_SPEC_T get_storage_spec(node *op) { return ((token*)op)->storage_spec;}
%token AND_OP OR_OP MUL_ASSIGN DIV_ASSIGN MOD_ASSIGN ADD_ASSIGN
%token SUB_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN
%token XOR_ASSIGN OR_ASSIGN TYPE_NAME
%token VOID UINT1 UINT8 UINT16 UINT32 UINT64 INT1 INT8 INT16 INT32 INT64 FP32 FP64
%token VOID UINT1 UINT8 UINT16 UINT32 UINT64 INT1 INT8 INT16 INT32 INT64 FP16 FP32 FP64
%token IF ELSE FOR CONTINUE WHILE
%token NEWAXIS ELLIPSIS AT
%token GET_GLOBAL_RANGE GET_RANGE_ID DOT TRANS MAX MIN SELECT ATOMIC_CAS ATOMIC_EXCHG ALLOC_CONST
@@ -77,6 +77,7 @@ type_specifier
| INT16 { $$ = new token(INT16_T); }
| INT32 { $$ = new token(INT32_T); }
| INT64 { $$ = new token(INT64_T); }
| FP16 { $$ = new token(FLOAT16_T); }
| FP32 { $$ = new token(FLOAT32_T); }
| FP64 { $$ = new token(FLOAT64_T); }
;

View File

@@ -38,6 +38,7 @@ using triton::lang::return_void;
"int16" { return return_impl(INT16, yytext); }
"int32" { return return_impl(INT32, yytext); }
"int64" { return return_impl(INT64, yytext); }
"fp16" { return return_impl(FP16, yytext); }
"fp32" { return return_impl(FP32, yytext); }
"fp64" { return return_impl(FP64, yytext); }
"..." { return return_impl(ELLIPSIS, yytext); }

View File

@@ -65,6 +65,7 @@ public:
void target_independent(ir::module &module) {
optimize_dot.run(module);
optimize_trans.run(module);
// ir::print(module, std::cout);
}
void target_dependent(ir::module &module) {

View File

@@ -247,8 +247,6 @@ std::string cu_module::compile_llvm_module(llvm::Module* module) {
return std::string(buffer.begin(), buffer.end());
}
cu_module::cu_module(driver::context * context, llvm::Module* ll_module): cu_module(context, compile_llvm_module(ll_module)) { }
cu_module::cu_module(driver::context * context, std::string const & source) : module(context, CUmodule(), true), source_(source){

View File

@@ -56,6 +56,9 @@ type *builder::get_int32_ty()
type *builder::get_int64_ty()
{ return type::get_int64_ty(ctx_); }
type *builder::get_half_ty()
{ return type::get_half_ty(ctx_); }
type *builder::get_float_ty()
{ return type::get_float_ty(ctx_); }

View File

View File

@@ -21,6 +21,7 @@ ir::type* typed_declaration_specifier::type(ir::module *mod) const {
case INT16_T: return ir::type::get_int16_ty(ctx);
case INT32_T: return ir::type::get_int32_ty(ctx);
case INT64_T: return ir::type::get_int64_ty(ctx);
case FLOAT16_T: return ir::type::get_half_ty(ctx);
case FLOAT32_T: return ir::type::get_float_ty(ctx);
case FLOAT64_T: return ir::type::get_double_ty(ctx);
default: throw std::runtime_error("unreachable");

View File

@@ -69,6 +69,12 @@ void node::implicit_cast(ir::builder &builder, ir::value *&lhs, ir::value *&rhs,
to_convert = explicit_cast(builder, to_convert, builder.get_float_ty());
is_float = true;
}
// One operand is half
else if(left_ty->is_half_ty() || right_ty->is_half_ty()){
ir::value *&to_convert = left_ty->is_half_ty()?rhs:lhs;
to_convert = explicit_cast(builder, to_convert, builder.get_half_ty());
is_float = true;
}
// Both operands are integers
else if(left_ty->is_integer_ty() && right_ty->is_integer_ty()){
is_int = true;