[general] hmma baseline setup
This commit is contained in:
@@ -3,18 +3,23 @@ import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
data_files_path = tf.resource_loader.get_data_files_path()
|
||||
library_dir = '/home/philippe/Development/triton/build/examples/python/tensorflow'
|
||||
library_dir = '/home/philippe/development/triton/build/examples/python/tensorflow'
|
||||
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
|
||||
|
||||
M, N, K = 512, 512, 512
|
||||
a = tf.placeholder(tf.float32, shape=[M, K])
|
||||
b = tf.placeholder(tf.float32, shape=[N, K])
|
||||
a = tf.placeholder(tf.float16, shape=[M, K])
|
||||
b = tf.placeholder(tf.float16, shape=[N, K])
|
||||
locks = tf.placeholder(tf.int32, shape=[4096])
|
||||
c = module.block_sparse_mat_mul(a, b, locks)
|
||||
c = module.dot(a, b, locks)
|
||||
# Reference
|
||||
ha = np.random.rand(M, K).astype(np.float16)
|
||||
hb = np.random.rand(N, K).astype(np.float16)
|
||||
hresult = np.dot(hb.T, ha)
|
||||
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
|
||||
a: np.random.rand(M, K),
|
||||
b: np.random.rand(N, K)})
|
||||
print(result)
|
||||
a: ha,
|
||||
b: hb})
|
||||
print(result - hresult)
|
||||
|
Reference in New Issue
Block a user