Input-dependent models now activated for all the operations
This commit is contained in:
@@ -6,71 +6,59 @@ import numpy as np
|
||||
from sklearn.neighbors.kde import KernelDensity
|
||||
from pyviennacl.atidlas import FetchingPolicy
|
||||
|
||||
def decode(y):
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
||||
y[7] = fetch[y[7]]
|
||||
y[8] = fetch[y[8]]
|
||||
return y
|
||||
|
||||
def resample(X, tbincount, densities, step):
|
||||
def resample(X, draw):
|
||||
Xtuples = [tuple(x) for x in X]
|
||||
r = random.random()
|
||||
while(True):
|
||||
if(len(tbincount)==0 or len(densities)==0 or r<=1.0/len(densities)):
|
||||
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)])
|
||||
else:
|
||||
probs = [1.0/x if x>0 else 0 for x in tbincount]
|
||||
distr = np.random.choice(range(tbincount.size), p = probs/np.sum(probs))
|
||||
x = densities[distr].sample()[0]
|
||||
x = np.maximum(np.ones(x.shape),(x - step/2).astype(int)/step + 1)*step
|
||||
x = draw()
|
||||
if tuple(x) not in Xtuples:
|
||||
break
|
||||
return x.astype(int)
|
||||
|
||||
def generate_dataset(TemplateType, execution_handler):
|
||||
I = 50
|
||||
step = 64
|
||||
path = "./data"
|
||||
def generate_dataset(TemplateType, execution_handler, nTuning, nDataPoints, compute_perf, draw):
|
||||
|
||||
# print "Getting some good profiles..."
|
||||
# X = np.empty((I, 3))
|
||||
# t = np.empty(I)
|
||||
# profiles = []
|
||||
# for i in range(I):
|
||||
# x = resample(X, [], [], step)
|
||||
# y = execution_handler(x)
|
||||
# if y not in profiles:
|
||||
# profiles.append(y)
|
||||
# idx = profiles.index(y)
|
||||
# X[i,:] = x
|
||||
# t[i] = idx
|
||||
# densities = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)];
|
||||
#
|
||||
# print "Generating the dataset..."
|
||||
# N = 10000
|
||||
# Y = np.empty((N, len(profiles)))
|
||||
# X = np.empty((N,3))
|
||||
# t = []
|
||||
#
|
||||
# for i in range(N):
|
||||
# x = resample(X, [], [], step)
|
||||
# for j,y in enumerate(profiles):
|
||||
# T = execution_handler(x, os.devnull, decode(map(int, y)))
|
||||
# Y[i,j] = 2*1e-9*x[0]*x[1]*x[2]/T
|
||||
# idx = np.argmax(Y[i,:])
|
||||
# X[i,:] = x
|
||||
# t = np.argmax(Y[:i+1,], axis=1)
|
||||
# densities[idx].fit(X[t==idx,:])
|
||||
# if i%10==0:
|
||||
# sys.stdout.write('%d data points generated\r'%i)
|
||||
# sys.stdout.flush()
|
||||
#
|
||||
# np.savetxt(os.path.join(path,"profiles.csv"), profiles)
|
||||
# np.savetxt(os.path.join(path,"X.csv"), X)
|
||||
# np.savetxt(os.path.join(path,"Y.csv"), Y)
|
||||
print "Getting some good profiles..."
|
||||
nDim = draw().size
|
||||
X = np.empty((nTuning, nDim))
|
||||
t = np.empty(nTuning)
|
||||
profiles = []
|
||||
for i in range(nTuning):
|
||||
x = resample(X, draw)
|
||||
y = execution_handler(x)
|
||||
if y not in profiles:
|
||||
profiles.append(y)
|
||||
idx = profiles.index(y)
|
||||
X[i,:] = x
|
||||
t[i] = idx
|
||||
|
||||
profiles = np.loadtxt(os.path.join(path,"profiles.csv"))
|
||||
X = np.loadtxt(os.path.join(path,"X.csv"))
|
||||
Y = np.loadtxt(os.path.join(path,"Y.csv"))
|
||||
print "Generating the dataset..."
|
||||
Y = np.empty((nDataPoints, len(profiles)))
|
||||
X = np.empty((nDataPoints, nDim))
|
||||
t = []
|
||||
|
||||
for i in range(nDataPoints):
|
||||
x = resample(X, draw)
|
||||
for j,y in enumerate(profiles):
|
||||
T = execution_handler(x, os.devnull, y)
|
||||
Y[i,j] = compute_perf(x, T)
|
||||
idx = np.argmax(Y[i,:])
|
||||
X[i,:] = x
|
||||
t = np.argmax(Y[:i+1,], axis=1)
|
||||
if i%10==0:
|
||||
sys.stdout.write('%d data points generated\r'%i)
|
||||
sys.stdout.flush()
|
||||
|
||||
template_name = TemplateType.__name__
|
||||
dir = os.path.join("data", template_name)
|
||||
if not os.path.exists(dir):
|
||||
os.makedirs(dir)
|
||||
|
||||
np.savetxt(os.path.join(dir,"profiles.csv"), profiles)
|
||||
np.savetxt(os.path.join(dir,"X.csv"), X)
|
||||
np.savetxt(os.path.join(dir,"Y.csv"), Y)
|
||||
|
||||
profiles = np.loadtxt(os.path.join(dir, "profiles.csv"))
|
||||
X = np.loadtxt(os.path.join(dir, "X.csv"),ndmin=2)
|
||||
Y = np.loadtxt(os.path.join(dir, "Y.csv"),ndmin=2)
|
||||
|
||||
return X, Y, profiles
|
||||
|
Reference in New Issue
Block a user