Input-dependent models now activated for all the operations
This commit is contained in:
@@ -4,16 +4,16 @@ tmp-folder = /tmp/
|
||||
[vector-axpy]
|
||||
devices = 0
|
||||
precision = single
|
||||
size = 10000000
|
||||
|
||||
#~ size = 10000000
|
||||
#~
|
||||
#~ [matrix-axpy]
|
||||
#~ devices = 0
|
||||
#~ precision = all
|
||||
#~ precision = single
|
||||
#~ size = 3072, 3072
|
||||
|
||||
#~
|
||||
#~ [row-wise-reduction]
|
||||
#~ devices = 0
|
||||
#~ precision = all
|
||||
#~ precision = single
|
||||
#~ layout = N, T
|
||||
#~ size = 3968, 3968
|
||||
|
||||
@@ -21,4 +21,4 @@ size = 10000000
|
||||
devices = 0
|
||||
precision = single
|
||||
layout = NT
|
||||
size = 1536, 1536, 1536
|
||||
#size = 1536, 1536, 1536
|
||||
|
@@ -8,6 +8,7 @@ from external.configobj import ConfigObj
|
||||
|
||||
import pyopencl as cl
|
||||
import pyviennacl as vcl
|
||||
import numpy as np
|
||||
from pyviennacl import backend
|
||||
from pyviennacl import opencl
|
||||
from pyviennacl import atidlas
|
||||
@@ -73,32 +74,45 @@ def do_tuning(config_fname, spec_fname, viennacl_root):
|
||||
with open(fname, "w+") as archive:
|
||||
return optimize.genetic(statement, device, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||
lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
|
||||
#Helper
|
||||
def tune(execution_handler, nTuning, nDataPoints, draw):
|
||||
if 'size' in p:
|
||||
profile = execution_handler(map_to_list(int, p['size']))
|
||||
else:
|
||||
def compute_perf(x, t):
|
||||
return TYPES[operation]['perf-index']([datatype().itemsize, x, t])
|
||||
X, Y, profiles = generate_dataset(TYPES[operation]['template'], execution_handler, nTuning, nDataPoints, compute_perf, draw)
|
||||
train_model(X, Y, profiles, TYPES[operation]['perf-measure'])
|
||||
|
||||
#Vector AXPY
|
||||
if operation=='vector-axpy':
|
||||
def execution_handler(sizes, fname=os.devnull, parameters=None):
|
||||
x = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
|
||||
y = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
|
||||
return execute(device, vcl.Statement(vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y))), (), sizes, fname, parameters)
|
||||
if 'size' in p:
|
||||
profile = execution_handler(map_to_list(int, p['size']))
|
||||
tune(execution_handler, 50, 10000, lambda : 64*np.random.randint(low=10, high=100000, size=1))
|
||||
#Matrix AXPY
|
||||
if operation=='matrix-axpy':
|
||||
A = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
B = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
execute(A+B, ())
|
||||
def execution_handler(sizes, fname=os.devnull, parameters=None):
|
||||
A = vcl.Matrix(sizes, context=ctx, dtype=datatype)
|
||||
B = vcl.Matrix(sizes, context=ctx, dtype=datatype)
|
||||
return execute(device, vcl.Statement(A+B), (), sizes, fname, parameters)
|
||||
tune(execution_handler, 50, 10000, lambda : 64*np.random.randint(low=5, high=100, size=2))
|
||||
#Row-wise reduction
|
||||
if operation=='row-wise-reduction':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
layouts = map_to_list(str,p['layout'])
|
||||
if 'all' in layouts:
|
||||
layouts = ['N', 'T']
|
||||
for A_trans in layouts:
|
||||
A = vcl.Matrix(s if A_trans=='N' else s[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
|
||||
x = vcl.Vector(s[1] if A_trans=='N' else s[0], context=ctx, dtype=datatype)
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
execute(LHS*x, ())
|
||||
def execution_handler(sizes, fname=os.devnull, parameters=None):
|
||||
A = vcl.Matrix(sizes if A_trans=='N' else sizes[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
|
||||
x = vcl.Vector(sizes[1] if A_trans=='N' else sizes[0], context=ctx, dtype=datatype)
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
execute(device, vcl.Statement(LHS*x), (), sizes, fname, parameters)
|
||||
tune(execution_handler, 50, 10000, lambda : 64*np.random.randint(low=5, high=100, size=2))
|
||||
#Matrix Product
|
||||
if operation=='matrix-product':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
layouts = map_to_list(str,p['layout'])
|
||||
if 'all' in layouts:
|
||||
layouts = ['NN', 'NT', 'TN', 'TT']
|
||||
for layout in layouts:
|
||||
@@ -114,11 +128,7 @@ def do_tuning(config_fname, spec_fname, viennacl_root):
|
||||
C = vcl.Matrix((sizes[0], sizes[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
|
||||
statement = vcl.Statement(vcl.Assign(C,LHS*RHS*alpha + C*beta))
|
||||
return execute(device, statement,(A_trans, B_trans), sizes, fname, parameters)
|
||||
if 'size' in p:
|
||||
profile = execution_handler(map(int, p['size']))
|
||||
else:
|
||||
X, Y, profiles = generate_dataset(TYPES[operation]['template'], execution_handler)
|
||||
train_model(X, Y, profiles)
|
||||
tune(execution_handler, 50, 10000, lambda : 64*np.random.randint(low=1, high=40, size=3))
|
||||
|
||||
|
||||
|
||||
|
@@ -6,71 +6,59 @@ import numpy as np
|
||||
from sklearn.neighbors.kde import KernelDensity
|
||||
from pyviennacl.atidlas import FetchingPolicy
|
||||
|
||||
def decode(y):
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
||||
y[7] = fetch[y[7]]
|
||||
y[8] = fetch[y[8]]
|
||||
return y
|
||||
|
||||
def resample(X, tbincount, densities, step):
|
||||
def resample(X, draw):
|
||||
Xtuples = [tuple(x) for x in X]
|
||||
r = random.random()
|
||||
while(True):
|
||||
if(len(tbincount)==0 or len(densities)==0 or r<=1.0/len(densities)):
|
||||
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)])
|
||||
else:
|
||||
probs = [1.0/x if x>0 else 0 for x in tbincount]
|
||||
distr = np.random.choice(range(tbincount.size), p = probs/np.sum(probs))
|
||||
x = densities[distr].sample()[0]
|
||||
x = np.maximum(np.ones(x.shape),(x - step/2).astype(int)/step + 1)*step
|
||||
x = draw()
|
||||
if tuple(x) not in Xtuples:
|
||||
break
|
||||
return x.astype(int)
|
||||
|
||||
def generate_dataset(TemplateType, execution_handler):
|
||||
I = 50
|
||||
step = 64
|
||||
path = "./data"
|
||||
def generate_dataset(TemplateType, execution_handler, nTuning, nDataPoints, compute_perf, draw):
|
||||
|
||||
# print "Getting some good profiles..."
|
||||
# X = np.empty((I, 3))
|
||||
# t = np.empty(I)
|
||||
# profiles = []
|
||||
# for i in range(I):
|
||||
# x = resample(X, [], [], step)
|
||||
# y = execution_handler(x)
|
||||
# if y not in profiles:
|
||||
# profiles.append(y)
|
||||
# idx = profiles.index(y)
|
||||
# X[i,:] = x
|
||||
# t[i] = idx
|
||||
# densities = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)];
|
||||
#
|
||||
# print "Generating the dataset..."
|
||||
# N = 10000
|
||||
# Y = np.empty((N, len(profiles)))
|
||||
# X = np.empty((N,3))
|
||||
# t = []
|
||||
#
|
||||
# for i in range(N):
|
||||
# x = resample(X, [], [], step)
|
||||
# for j,y in enumerate(profiles):
|
||||
# T = execution_handler(x, os.devnull, decode(map(int, y)))
|
||||
# Y[i,j] = 2*1e-9*x[0]*x[1]*x[2]/T
|
||||
# idx = np.argmax(Y[i,:])
|
||||
# X[i,:] = x
|
||||
# t = np.argmax(Y[:i+1,], axis=1)
|
||||
# densities[idx].fit(X[t==idx,:])
|
||||
# if i%10==0:
|
||||
# sys.stdout.write('%d data points generated\r'%i)
|
||||
# sys.stdout.flush()
|
||||
#
|
||||
# np.savetxt(os.path.join(path,"profiles.csv"), profiles)
|
||||
# np.savetxt(os.path.join(path,"X.csv"), X)
|
||||
# np.savetxt(os.path.join(path,"Y.csv"), Y)
|
||||
print "Getting some good profiles..."
|
||||
nDim = draw().size
|
||||
X = np.empty((nTuning, nDim))
|
||||
t = np.empty(nTuning)
|
||||
profiles = []
|
||||
for i in range(nTuning):
|
||||
x = resample(X, draw)
|
||||
y = execution_handler(x)
|
||||
if y not in profiles:
|
||||
profiles.append(y)
|
||||
idx = profiles.index(y)
|
||||
X[i,:] = x
|
||||
t[i] = idx
|
||||
|
||||
profiles = np.loadtxt(os.path.join(path,"profiles.csv"))
|
||||
X = np.loadtxt(os.path.join(path,"X.csv"))
|
||||
Y = np.loadtxt(os.path.join(path,"Y.csv"))
|
||||
print "Generating the dataset..."
|
||||
Y = np.empty((nDataPoints, len(profiles)))
|
||||
X = np.empty((nDataPoints, nDim))
|
||||
t = []
|
||||
|
||||
for i in range(nDataPoints):
|
||||
x = resample(X, draw)
|
||||
for j,y in enumerate(profiles):
|
||||
T = execution_handler(x, os.devnull, y)
|
||||
Y[i,j] = compute_perf(x, T)
|
||||
idx = np.argmax(Y[i,:])
|
||||
X[i,:] = x
|
||||
t = np.argmax(Y[:i+1,], axis=1)
|
||||
if i%10==0:
|
||||
sys.stdout.write('%d data points generated\r'%i)
|
||||
sys.stdout.flush()
|
||||
|
||||
template_name = TemplateType.__name__
|
||||
dir = os.path.join("data", template_name)
|
||||
if not os.path.exists(dir):
|
||||
os.makedirs(dir)
|
||||
|
||||
np.savetxt(os.path.join(dir,"profiles.csv"), profiles)
|
||||
np.savetxt(os.path.join(dir,"X.csv"), X)
|
||||
np.savetxt(os.path.join(dir,"Y.csv"), Y)
|
||||
|
||||
profiles = np.loadtxt(os.path.join(dir, "profiles.csv"))
|
||||
X = np.loadtxt(os.path.join(dir, "X.csv"),ndmin=2)
|
||||
Y = np.loadtxt(os.path.join(dir, "Y.csv"),ndmin=2)
|
||||
|
||||
return X, Y, profiles
|
||||
|
@@ -40,13 +40,15 @@ class GeneticOperators(object):
|
||||
self.ParameterType = TemplateType.Parameters
|
||||
self.build_template = build_template
|
||||
self.cache = {}
|
||||
self.indpb = 0.05
|
||||
self.out = out
|
||||
|
||||
self.genome_info = {
|
||||
vcl.atidlas.VectorAxpyTemplate: [3,4,4,vcl.atidlas.FetchingPolicy],
|
||||
vcl.atidlas.MatrixAxpyTemplate: [3,3,3,3,3,vcl.atidlas.FetchingPolicy],
|
||||
vcl.atidlas.RowWiseReductionTemplate: [3,3,3,4,vcl.atidlas.FetchingPolicy],
|
||||
vcl.atidlas.MatrixProductTemplate: [3,3,3,3,3,3,3,vcl.atidlas.FetchingPolicy,vcl.atidlas.FetchingPolicy,3]
|
||||
}[TemplateType]
|
||||
self.indpb = 1.0/sum([1 if x==vcl.atidlas.FetchingPolicy else x for x in self.genome_info])
|
||||
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
@@ -149,7 +151,7 @@ class GeneticOperators(object):
|
||||
ind.fitness.values = fit
|
||||
hof.update(population)
|
||||
|
||||
while time.time() - start_time < maxtime:
|
||||
while time.time() - start_time < maxtime and gen < maxgen:
|
||||
# Vary the population
|
||||
offspring = []
|
||||
for _ in xrange(mu):
|
||||
@@ -166,9 +168,8 @@ class GeneticOperators(object):
|
||||
offspring.append(ind)
|
||||
else: # Apply reproduction
|
||||
offspring.append(random.choice(population))
|
||||
|
||||
#~ for x in offspring:
|
||||
#~ print self.decode(x)
|
||||
#for x in offspring:
|
||||
#print self.decode(x)
|
||||
# Evaluate the individuals with an invalid fitness
|
||||
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
||||
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
|
||||
@@ -180,9 +181,9 @@ class GeneticOperators(object):
|
||||
population[:] = self.toolbox.select(population + offspring, mu)
|
||||
#Update
|
||||
gen = gen + 1
|
||||
best_profile = '(%s)'%','.join(map(str,self.decode(hof[0])));
|
||||
best_profile = '(%s)'%','.join(map(str,self.decode(hof[0])))
|
||||
best_performance = compute_perf(hof[0].fitness.values[0])
|
||||
sys.stdout.write('Time %d | Best %d %s [ for %s ]\r'%(time.time() - start_time, best_performance, perf_metric, best_profile))
|
||||
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\r'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
|
||||
sys.stdout.flush()
|
||||
sys.stdout.write('\n')
|
||||
return self.decode(hof[0])
|
||||
|
@@ -8,7 +8,7 @@ from pybrain.supervised.trainers import BackpropTrainer
|
||||
from pybrain.structure import LinearLayer, TanhLayer, SigmoidLayer, SoftmaxLayer, FeedForwardNetwork, BiasUnit
|
||||
from pybrain.tools.neuralnets import NNregression, Trainer
|
||||
|
||||
def train_model(X, Y, profiles):
|
||||
def train_model(X, Y, profiles, metric):
|
||||
#Preprocessing
|
||||
Xmean = np.mean(X, axis=0)
|
||||
Xstd = np.std(X, axis=0)
|
||||
@@ -43,7 +43,7 @@ def train_model(X, Y, profiles):
|
||||
np.set_printoptions(precision=2)
|
||||
print("-----------------")
|
||||
print("Average testing speedup : %f (Optimal : %f)"%(sp.stats.gmean(speedups), sp.stats.gmean(optspeedups)))
|
||||
print("Average GFLOP/s : %f (Default %f, Optimal %f)"%(np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))))
|
||||
print("Minimum speedup is %f wrt %i GFlops"%(np.min(speedups), GFlops[np.argmin(speedups)]))
|
||||
print("Maximum speedup is %f wrt %i GFlops for %s"%(np.max(speedups), GFlops[np.argmax(speedups)], X[np.argmax(speedups)]*Xstd+Xmean))
|
||||
print("Average %s: %f (Default %f, Optimal %f)"%(metric, np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))))
|
||||
print("Minimum speedup is %f wrt %i %s"%(np.min(speedups), GFlops[np.argmin(speedups)], metric))
|
||||
print("Maximum speedup is %f wrt %i %s"%(np.max(speedups), GFlops[np.argmax(speedups)], metric))
|
||||
print("--------")
|
Reference in New Issue
Block a user