* Load libcuda.so.1 if libcuda.so is not there. Error if both aren't
there.
* Support for multiple grad_to_none in triton.testing.do_bench
* Benchmark dataframe printed along with name
* update membar pass when data is double buffered
* Add instruction prefetch_s
* prefetch tests pass (except the 1 warp case)
* Fix the 1-warp bug
* Add back prefetch files
* Disable prefetch on a100
* Always add war barrier on sm>=80
This massively simplifies implementation of `reassociate` and also fixes
a bunch of bug. The pass could still be improved, but can already be used
to generate constant pointer offsets in eg the matmul epilogue
This PR implements a major overhaul of the frontend for Triton, and replaces Triton-C by a pure Python API in which kernels are defined as @triton.jit decorated functions. The documentation and tutorials have also been updated to accommodate these changes.
See documentations for more information on the new API
This PR adds an automatic memory alignment mechanism in the Triton runtime. Specifically, the JIT compiler detects the alignment (in bytes) of each pointer argument as well as the largest power of two divisor (between 1 and 16) of each integer argument. Proper .aligned and .multipleof attributes are then added to the Triton-IR on-the-fly for all auto-tunable kernels. There is a cache that remembers all the kernels compiled for each possible configuration.
This PR also includes substantial cleaning of the Python API. This adds 2-3us overhead, mostly due to accessing integer #defines from the auto-tuned compilation options. The previous solution was slightly faster but hacky and potentially unsafe, so this is preferred for now.
Improved handling of asynchronous copy, scheduling and synchronization for A100. Now achieving CUTLASS-like performance on large square dense matrix multiplication tasks
* Simplified `triton.kernel` API to achieve lower latency:
> .data_ptr() must now be passed as kernel argument. No more implicit
conversion from torch.tensor
> compilation options are now constant attributes, i.e., opt.d('VAR')
becomes opt.VAR
> torch.device must now be passed explicitly to triton.kernel (no
longer inferred from torch.tensor arguments)
* C++ tests moved to `python/tests/`
* C++ tutorial created in `tutorials/`
* Python tutorial created in python/tutorials/
* Version changed to 1.0alpha
* No longer copying C++ headers into the Python package
* added python/triton/ops/ package for pre-written Triton ops
- A100 support via mma.16816
- Thread swizzling for conflict-free shared memory accesses without
padding
- Complete overhaul of the LLVM code generation in
codegen/selection/generator.cc to remove overengineering
- Added debugging capabilities in the Python binding
- Compilation error for kernels that spill