Layer NormalizationΒΆ

05 layer norm

Out:

layer-norm-backward:
          N      Triton       Torch        Apex
0    1024.0  307.200008   98.303995  307.200008
1    1536.0  347.773587  134.050910  341.333333
2    2048.0  420.102553  161.154101  334.367350
3    2560.0  455.111129  181.238943  330.322572
4    3072.0  511.999982  191.999993  320.556515
5    3584.0  551.384634  207.768111  310.527060
6    4096.0  568.231237  220.412561  298.796351
7    4608.0  504.986315  232.825259  286.507772
8    5120.0  527.381977  242.845844  284.444444
9    5632.0  542.843364  243.545956  289.438969
10   6144.0  546.133354  248.661056  286.879370
11   6656.0  532.479975  256.000009  285.767438
12   7168.0  507.469040  260.654538  286.242939
13   7680.0  479.999983  262.190612  278.850215
14   8192.0  462.607053  267.130429  284.939124
15   8704.0  417.791980  267.815384  284.987724
16   9216.0  430.319054  272.394084  288.751954
17   9728.0  438.857162  280.278512  290.027323
18  10240.0  449.287041  286.433562  290.153487
19  10752.0  426.525614  247.172406  290.594591
20  11264.0  426.397479  245.536784  286.676558
21  11776.0  422.457417  249.667843  288.686414
22  12288.0  419.504980  254.673582  294.029924
23  12800.0  413.458944  253.465340  289.538159
24  13312.0  411.181478  252.559690  289.916513
25  13824.0  404.112047  256.991469  292.313649
26  14336.0  393.215988  254.485198  286.719986
27  14848.0  385.245405  257.665934  289.246765
28  15360.0  373.874218  257.970599  287.326580
29  15872.0  371.274849  261.806182  289.899545

import torch

import triton
import triton.language as tl

try:
    # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it
    # should not be added to extras_require in setup.py.
    import apex
    HAS_APEX = True
except ModuleNotFoundError:
    HAS_APEX = False


# Forward Pass
@triton.jit
def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps,
                          BLOCK_SIZE: tl.constexpr):
    # position of elements processed by this program
    row = tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X += row * stride
    Y += row * stride
    # load data and cast to float32
    x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
    # compute mean
    mean = tl.sum(x, axis=0) / N
    # compute std
    xmean = tl.where(mask, x - mean, 0.)
    var = tl.sum(xmean * xmean, axis=0) / N
    rstd = 1 / tl.sqrt(var + eps)
    xhat = xmean * rstd
    # write-back mean/rstd
    tl.store(M + row, mean)
    tl.store(V + row, rstd)
    # multiply by weight and add bias
    w = tl.load(W + cols, mask=mask)
    b = tl.load(B + cols, mask=mask)
    y = xhat * w + b
    # write-back
    tl.store(Y + cols, y, mask=mask)


# Backward pass (DX + partial DW + partial DB)
@triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock, stride, N, eps,
                             GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr):
    # position of elements processed by this program
    row = tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE_N)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X += row * stride
    DY += row * stride
    DX += row * stride
    # offset locks and weight/bias gradient pointer
    # each kernel instance accumulates partial sums for
    # DW and DB into one of GROUP_SIZE_M independent buffers
    # these buffers stay in the L2, which allow this kernel
    # to be fast
    lock_id = row % GROUP_SIZE_M
    Lock += lock_id
    Count = Lock + GROUP_SIZE_M
    DW = DW + lock_id * N + cols
    DB = DB + lock_id * N + cols
    # load data to SRAM
    x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
    dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
    w = tl.load(W + cols, mask=mask).to(tl.float32)
    mean = tl.load(M + row)
    rstd = tl.load(V + row)
    # compute dx
    xhat = (x - mean) * rstd
    wdy = w * dy
    xhat = tl.where(mask, xhat, 0.)
    wdy = tl.where(mask, wdy, 0.)
    mean1 = tl.sum(xhat * wdy, axis=0) / N
    mean2 = tl.sum(wdy, axis=0) / N
    dx = (wdy - (xhat * mean1 + mean2)) * rstd
    # write-back dx
    tl.store(DX + cols, dx, mask=mask)
    # accumulate partial sums for dw/db
    partial_dw = (dy * xhat).to(w.dtype)
    partial_db = (dy).to(w.dtype)
    while tl.atomic_cas(Lock, 0, 1) == 1:
        pass
    count = tl.load(Count)
    # first store doesn't accumulate
    if count == 0:
        tl.atomic_xchg(Count, 1)
    else:
        partial_dw += tl.load(DW, mask=mask)
        partial_db += tl.load(DB, mask=mask)
    tl.store(DW, partial_dw, mask=mask)
    tl.store(DB, partial_db, mask=mask)
    # release lock
    tl.atomic_xchg(Lock, 0)

# Backward pass (total DW + total DB)


@triton.jit
def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N,
                         BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr):
    pid = tl.program_id(0)
    cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(0, M, BLOCK_SIZE_M):
        rows = i + tl.arange(0, BLOCK_SIZE_M)
        mask = (rows[:, None] < M) & (cols[None, :] < N)
        offs = rows[:, None] * N + cols[None, :]
        dw += tl.load(DW + offs, mask=mask, other=0.)
        db += tl.load(DB + offs, mask=mask, other=0.)
    sum_dw = tl.sum(dw, axis=0)
    sum_db = tl.sum(db, axis=0)
    tl.store(FINAL_DW + cols, sum_dw, mask=cols < N)
    tl.store(FINAL_DB + cols, sum_db, mask=cols < N)


class LayerNorm(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, normalized_shape, weight, bias, eps):
        # allocate output
        y = torch.empty_like(x)
        # reshape input data into 2D tensor
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        mean = torch.empty((M, ), dtype=torch.float32, device='cuda')
        rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_SIZE:
            raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
        # heuristics for number of warps
        num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
        # enqueue kernel
        _layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd,
                                    x_arg.stride(0), N, eps,
                                    BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
        ctx.save_for_backward(x, weight, bias, mean, rstd)
        ctx.BLOCK_SIZE = BLOCK_SIZE
        ctx.num_warps = num_warps
        ctx.eps = eps
        return y

    @staticmethod
    def backward(ctx, dy):
        x, w, b, m, v = ctx.saved_tensors
        # heuristics for amount of parallel reduction stream for DG/DB
        N = w.shape[0]
        GROUP_SIZE_M = 64
        if N <= 8192: GROUP_SIZE_M = 96
        if N <= 4096: GROUP_SIZE_M = 128
        if N <= 1024: GROUP_SIZE_M = 256
        # allocate output
        locks = torch.zeros(2 * GROUP_SIZE_M, dtype=torch.int32, device='cuda')
        _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        _db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        dw = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        db = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        dx = torch.empty_like(dy)
        # enqueue kernel using forward pass heuristics
        # also compute partial sums for DW and DB
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks,
                                       x_arg.stride(0), N, ctx.eps,
                                       BLOCK_SIZE_N=ctx.BLOCK_SIZE,
                                       GROUP_SIZE_M=GROUP_SIZE_M,
                                       num_warps=ctx.num_warps)
        grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])]
        # accumulate partial sums in separate kernel
        _layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N,
                                   BLOCK_SIZE_M=32,
                                   BLOCK_SIZE_N=128)
        return dx, None, dw, db, None


layer_norm = LayerNorm.apply


def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
    dy = .1 * torch.randn_like(x)
    x.requires_grad_(True)
    # forward pass
    y_tri = layer_norm(x, w_shape, weight, bias, eps)
    y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
    # backward pass (triton)
    y_tri.backward(dy, retain_graph=True)
    dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
    x.grad, weight.grad, bias.grad = None, None, None
    # backward pass (torch)
    y_ref.backward(dy, retain_graph=True)
    dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
    # compare
    triton.testing.assert_almost_equal(y_tri, y_ref)
    triton.testing.assert_almost_equal(dx_tri, dx_ref)
    triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1)
    triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1)


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=['N'],
        x_vals=[512 * i for i in range(2, 32)],
        line_arg='provider',
        line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []),
        line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []),
        styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
        ylabel='GB/s',
        plot_name='layer-norm-backward',
        args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}
    )
)
def bench_layer_norm(M, N, dtype, provider, mode='backward', eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
    dy = .1 * torch.randn_like(x)
    x.requires_grad_(True)
    # utility functions
    if provider == 'triton':
        y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'torch':
        y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'apex':
        apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype)
        y_fwd = lambda: apex_layer_norm(x)
    # forward pass
    if mode == 'forward':
        gbps = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500)
    # backward pass
    if mode == 'backward':
        gbps = lambda ms: 3 * x.numel() * x.element_size() / ms * 1e-6
        y = y_fwd()
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True),
                                                     grad_to_none=[x], rep=500)
    return gbps(ms), gbps(max_ms), gbps(min_ms)


bench_layer_norm.run(save_path='.', print_data=True)

Total running time of the script: ( 2 minutes 11.405 seconds)

Gallery generated by Sphinx-Gallery