Layer NormalizationΒΆ

05 layer norm

Out:

layer-norm-backward:
          N      Triton       Torch        Apex
0    1024.0  307.200008   97.912354  303.407414
1    1536.0  347.773587  134.540150  341.333333
2    2048.0  420.102553  161.684218  323.368435
3    2560.0  458.507457  181.238943  330.322572
4    3072.0  511.999982  192.501302  320.556515
5    3584.0  547.872604  208.271186  312.785456
6    4096.0  568.231237  220.907859  300.623865
7    4608.0  507.302750  232.825259  287.999990
8    5120.0  527.381977  242.845844  285.104413
9    5632.0  540.671974  241.371422  288.204696
10   6144.0  548.163546  250.349744  287.438593
11   6656.0  534.260858  256.000009  286.279570
12   7168.0  512.000004  255.240352  280.182402
13   7680.0  485.052616  263.690977  277.172933
14   8192.0  463.698115  268.223740  281.673345
15   8704.0  418.629245  266.109560  282.291896
16   9216.0  432.845409  272.394084  288.375482
17   9728.0  439.683593  278.606213  287.173424
18  10240.0  446.025405  286.767793  288.112552
19  10752.0  423.724151  244.827326  288.321786
20  11264.0  426.397479  245.983625  287.285864
21  11776.0  421.198220  247.807112  287.219500
22  12288.0  420.701865  254.453844  294.911986
23  12800.0  413.458944  252.009851  287.910035
24  13312.0  411.181478  253.763296  290.972683
25  13824.0  403.620451  258.191439  292.829653
26  14336.0  394.116833  255.240352  289.372589
27  14848.0  385.245405  256.552919  289.952797
28  15360.0  379.649845  262.751252  289.811315
29  15872.0  370.913333  261.806182  289.899545

import torch

import triton
import triton.language as tl

try:
    # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it
    # should not be added to extras_require in setup.py.
    import apex
    HAS_APEX = True
except ModuleNotFoundError:
    HAS_APEX = False


# Forward Pass
@triton.jit
def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps,
                          BLOCK_SIZE: tl.constexpr):
    # position of elements processed by this program
    row = tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X += row * stride
    Y += row * stride
    # load data and cast to float32
    x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
    # compute mean
    mean = tl.sum(x, axis=0) / N
    # compute std
    xmean = tl.where(mask, x - mean, 0.)
    var = tl.sum(xmean * xmean, axis=0) / N
    rstd = 1 / tl.sqrt(var + eps)
    xhat = xmean * rstd
    # write-back mean/rstd
    tl.store(M + row, mean)
    tl.store(V + row, rstd)
    # multiply by weight and add bias
    w = tl.load(W + cols, mask=mask)
    b = tl.load(B + cols, mask=mask)
    y = xhat * w + b
    # write-back
    tl.store(Y + cols, y, mask=mask)


# Backward pass (DX + partial DW + partial DB)
@triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock, stride, N, eps,
                             GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr):
    # position of elements processed by this program
    row = tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE_N)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X += row * stride
    DY += row * stride
    DX += row * stride
    # offset locks and weight/bias gradient pointer
    # each kernel instance accumulates partial sums for
    # DW and DB into one of GROUP_SIZE_M independent buffers
    # these buffers stay in the L2, which allow this kernel
    # to be fast
    lock_id = row % GROUP_SIZE_M
    Lock += lock_id
    Count = Lock + GROUP_SIZE_M
    DW = DW + lock_id * N + cols
    DB = DB + lock_id * N + cols
    # load data to SRAM
    x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
    dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
    w = tl.load(W + cols, mask=mask).to(tl.float32)
    mean = tl.load(M + row)
    rstd = tl.load(V + row)
    # compute dx
    xhat = (x - mean) * rstd
    wdy = w * dy
    xhat = tl.where(mask, xhat, 0.)
    wdy = tl.where(mask, wdy, 0.)
    mean1 = tl.sum(xhat * wdy, axis=0) / N
    mean2 = tl.sum(wdy, axis=0) / N
    dx = (wdy - (xhat * mean1 + mean2)) * rstd
    # write-back dx
    tl.store(DX + cols, dx, mask=mask)
    # accumulate partial sums for dw/db
    partial_dw = (dy * xhat).to(w.dtype)
    partial_db = (dy).to(w.dtype)
    while tl.atomic_cas(Lock, 0, 1) == 1:
        pass
    count = tl.load(Count)
    # first store doesn't accumulate
    if count == 0:
        tl.atomic_xchg(Count, 1)
    else:
        partial_dw += tl.load(DW, mask=mask)
        partial_db += tl.load(DB, mask=mask)
    tl.store(DW, partial_dw, mask=mask)
    tl.store(DB, partial_db, mask=mask)
    # release lock
    tl.atomic_xchg(Lock, 0)

# Backward pass (total DW + total DB)


@triton.jit
def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N,
                         BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr):
    pid = tl.program_id(0)
    cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(0, M, BLOCK_SIZE_M):
        rows = i + tl.arange(0, BLOCK_SIZE_M)
        mask = (rows[:, None] < M) & (cols[None, :] < N)
        offs = rows[:, None] * N + cols[None, :]
        dw += tl.load(DW + offs, mask=mask, other=0.)
        db += tl.load(DB + offs, mask=mask, other=0.)
    sum_dw = tl.sum(dw, axis=0)
    sum_db = tl.sum(db, axis=0)
    tl.store(FINAL_DW + cols, sum_dw, mask=cols < N)
    tl.store(FINAL_DB + cols, sum_db, mask=cols < N)


class LayerNorm(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, normalized_shape, weight, bias, eps):
        # allocate output
        y = torch.empty_like(x)
        # reshape input data into 2D tensor
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        mean = torch.empty((M, ), dtype=torch.float32, device='cuda')
        rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_SIZE:
            raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
        # heuristics for number of warps
        num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
        # enqueue kernel
        _layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd,
                                    x_arg.stride(0), N, eps,
                                    BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
        ctx.save_for_backward(x, weight, bias, mean, rstd)
        ctx.BLOCK_SIZE = BLOCK_SIZE
        ctx.num_warps = num_warps
        ctx.eps = eps
        return y

    @staticmethod
    def backward(ctx, dy):
        x, w, b, m, v = ctx.saved_tensors
        # heuristics for amount of parallel reduction stream for DG/DB
        N = w.shape[0]
        GROUP_SIZE_M = 64
        if N <= 8192: GROUP_SIZE_M = 96
        if N <= 4096: GROUP_SIZE_M = 128
        if N <= 1024: GROUP_SIZE_M = 256
        # allocate output
        locks = torch.zeros(2 * GROUP_SIZE_M, dtype=torch.int32, device='cuda')
        _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        _db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        dw = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        db = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        dx = torch.empty_like(dy)
        # enqueue kernel using forward pass heuristics
        # also compute partial sums for DW and DB
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks,
                                       x_arg.stride(0), N, ctx.eps,
                                       BLOCK_SIZE_N=ctx.BLOCK_SIZE,
                                       GROUP_SIZE_M=GROUP_SIZE_M,
                                       num_warps=ctx.num_warps)
        grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])]
        # accumulate partial sums in separate kernel
        _layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N,
                                   BLOCK_SIZE_M=32,
                                   BLOCK_SIZE_N=128)
        return dx, None, dw, db, None


layer_norm = LayerNorm.apply


def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
    dy = .1 * torch.randn_like(x)
    x.requires_grad_(True)
    # forward pass
    y_tri = layer_norm(x, w_shape, weight, bias, eps)
    y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
    # backward pass (triton)
    y_tri.backward(dy, retain_graph=True)
    dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
    x.grad, weight.grad, bias.grad = None, None, None
    # backward pass (torch)
    y_ref.backward(dy, retain_graph=True)
    dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
    # compare
    triton.testing.assert_almost_equal(y_tri, y_ref)
    triton.testing.assert_almost_equal(dx_tri, dx_ref)
    triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1)
    triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1)


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=['N'],
        x_vals=[512 * i for i in range(2, 32)],
        line_arg='provider',
        line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []),
        line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []),
        styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
        ylabel='GB/s',
        plot_name='layer-norm-backward',
        args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}
    )
)
def bench_layer_norm(M, N, dtype, provider, mode='backward', eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
    dy = .1 * torch.randn_like(x)
    x.requires_grad_(True)
    # utility functions
    if provider == 'triton':
        y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'torch':
        y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'apex':
        apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype)
        y_fwd = lambda: apex_layer_norm(x)
    # forward pass
    if mode == 'forward':
        gbps = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500)
    # backward pass
    if mode == 'backward':
        gbps = lambda ms: 3 * x.numel() * x.element_size() / ms * 1e-6
        y = y_fwd()
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True),
                                                     grad_to_none=[x], rep=500)
    return gbps(ms), gbps(max_ms), gbps(min_ms)


bench_layer_norm.run(save_path='.', print_data=True)

Total running time of the script: ( 2 minutes 12.137 seconds)

Gallery generated by Sphinx-Gallery