Layer NormalizationΒΆ

05 layer norm

Out:

layer-norm-backward:
          N      Triton       Torch        Apex
0    1024.0  307.200008   99.096776  307.200008
1    1536.0  351.085717  133.083026  338.201833
2    2048.0  423.724127  161.684218  334.367350
3    2560.0  458.507457  182.857144  328.556154
4    3072.0  511.999982  191.501303  320.556515
5    3584.0  551.384634  208.271186  308.301075
6    4096.0  568.231237  220.412561  298.796351
7    4608.0  495.928261  231.849059  286.507772
8    5120.0  522.893618  242.845844  283.787523
9    5632.0  536.380957  243.107920  291.310338
10   6144.0  542.117638  248.661056  286.322318
11   6656.0  525.473708  256.000009  286.279570
12   7168.0  505.976473  261.844750  288.160801
13   7680.0  481.253256  260.338991  277.172933
14   8192.0  460.440290  268.957600  286.600589
15   8704.0  416.958106  267.815384  284.987724
16   9216.0  428.651187  272.729961  289.507855
17   9728.0  438.857162  280.278512  288.950501
18  10240.0  446.836366  286.433562  290.153487
19  10752.0  428.651173  246.464170  289.941565
20  11264.0  429.104745  245.091565  285.767446
21  11776.0  421.826879  249.447482  288.686414
22  12288.0  420.102570  254.453844  294.911986
23  12800.0  415.135142  253.256381  289.811310
24  13312.0  412.242569  252.559690  290.179836
25  13824.0  404.604870  257.390218  292.571423
26  14336.0  397.761846  254.862216  286.242939
27  14848.0  383.999990  257.108233  289.012175
28  15360.0  374.253788  257.610071  287.326580
29  15872.0  366.982663  262.708969  291.006885

import torch
import triton.language as tl
import triton

# Forward Pass
@triton.jit
def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps, **META):
    BLOCK_SIZE = META['BLOCK_SIZE']
    # position of elements processed by this program
    row =  tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X += row * stride
    Y += row * stride
    # load data and cast to float32
    x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
    # compute mean
    mean = tl.sum(x, axis=0) / N
    # compute std
    xmean = tl.where(mask, x - mean, 0.)
    var   = tl.sum(xmean * xmean, axis=0) / N
    rstd  = 1 / tl.sqrt(var + eps)
    xhat  = xmean*rstd
    # write-back mean/rstd
    tl.store(M + row, mean)
    tl.store(V + row, rstd)
    # multiply by weight and add bias
    w = tl.load(W + cols, mask=mask)
    b = tl.load(B + cols, mask=mask)
    y = xhat * w + b
    # write-back
    tl.store(Y + cols, y, mask=mask)


# Backward pass (DX + partial DW + partial DB)
@triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock,
                       stride, N, eps,
                       **META):
    GROUP_SIZE_M = META['GROUP_SIZE_M']
    BLOCK_SIZE_N = META['BLOCK_SIZE_N']
    # position of elements processed by this program
    row =  tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE_N)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X  += row * stride
    DY += row * stride
    DX += row * stride
    # offset locks and weight/bias gradient pointer
    # each kernel instance accumulates partial sums for
    # DW and DB into one of GROUP_SIZE_M independent buffers
    # these buffers stay in the L2, which allow this kernel
    # to be fast
    lock_id = row % GROUP_SIZE_M
    Lock   += lock_id
    Count   = Lock + GROUP_SIZE_M
    DW      = DW + lock_id*N + cols
    DB      = DB + lock_id*N + cols
    # load data to SRAM
    x     = tl.load(X  + cols, mask=mask, other=0).to(tl.float32)
    dy    = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
    w     = tl.load(W  + cols, mask=mask).to(tl.float32)
    mean  = tl.load(M + row)
    rstd  = tl.load(V + row)
    # compute dx
    xhat  = (x - mean)*rstd
    wdy   = w * dy
    xhat  = tl.where(mask, xhat, 0.)
    wdy   = tl.where(mask, wdy , 0.)
    mean1 = tl.sum(xhat * wdy, axis=0) / N
    mean2 = tl.sum(wdy, axis=0) / N
    dx    = (wdy - (xhat*mean1 + mean2))*rstd
    # write-back dx
    tl.store(DX + cols, dx, mask=mask)
    # accumulate partial sums for dw/db
    partial_dw = (dy*xhat).to(w.dtype)
    partial_db = (dy).to(w.dtype)
    while tl.atomic_cas(Lock, 0, 1) == 1:
        pass
    count = tl.load(Count)
    # first store doesn't accumulate
    if count == 0:
        tl.atomic_xchg(Count, 1)
    else:
        partial_dw += tl.load(DW, mask=mask)
        partial_db += tl.load(DB, mask=mask)
    tl.store(DW, partial_dw, mask=mask)
    tl.store(DB, partial_db, mask=mask)
    # release lock
    tl.atomic_xchg(Lock, 0)

# Backward pass (total DW + total DB)
@triton.jit
def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, **meta):
    pid = tl.program_id(0)
    BLOCK_SIZE_M = meta['BLOCK_SIZE_M']
    BLOCK_SIZE_N = meta['BLOCK_SIZE_N']
    cols = pid*BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    dw   = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    db   = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(0, M, BLOCK_SIZE_M):
        rows = i + tl.arange(0, meta['BLOCK_SIZE_M'])
        mask = (rows[:, None] < M) & (cols[None, :] < N)
        offs = rows[:, None]*N + cols[None, :]
        dw += tl.load(DW + offs, mask=mask, other=0.)
        db += tl.load(DB + offs, mask=mask, other=0.)
    sum_dw = tl.sum(dw, axis=0)
    sum_db = tl.sum(db, axis=0)
    tl.store(FINAL_DW + cols, sum_dw, mask=cols<N)
    tl.store(FINAL_DB + cols, sum_db, mask=cols<N)

class LayerNorm(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, normalized_shape, weight, bias, eps):
        # allocate output
        y = torch.empty_like(x)
        # reshape input data into 2D tensor
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        mean = torch.empty((M, ), dtype=torch.float32, device='cuda')
        rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_SIZE     = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_SIZE:
            raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
        # heuristics for number of warps
        num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
        # enqueue kernel
        _layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd,
                                    x_arg.stride(0), N, eps,
                                    BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
        ctx.save_for_backward(x, weight, bias, mean, rstd)
        ctx.BLOCK_SIZE = BLOCK_SIZE
        ctx.num_warps  = num_warps
        ctx.eps        = eps
        return y

    @staticmethod
    def backward(ctx, dy):
        x, w, b, m, v = ctx.saved_tensors
        # heuristics for amount of parallel reduction stream for DG/DB
        N = w.shape[0]
        GROUP_SIZE_M = 64
        if N <= 8192: GROUP_SIZE_M = 96
        if N <= 4096: GROUP_SIZE_M = 128
        if N <= 1024: GROUP_SIZE_M = 256
        # allocate output
        locks = torch.zeros(2*GROUP_SIZE_M, dtype=torch.int32, device='cuda')
        _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        _db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        dw  = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        db  = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        dx = torch.empty_like(dy)
        # enqueue kernel using forward pass heuristics
        # also compute partial sums for DW and DB
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks,
                                       x_arg.stride(0), N, ctx.eps,
                                       BLOCK_SIZE_N=ctx.BLOCK_SIZE,
                                       GROUP_SIZE_M=GROUP_SIZE_M,
                                       num_warps=ctx.num_warps)
        grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])]
        # accumulate partial sums in separate kernel
        _layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N,
                                   BLOCK_SIZE_M = 32,
                                   BLOCK_SIZE_N = 128)
        return dx, None, dw, db, None


layer_norm = LayerNorm.apply


def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight  = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias    = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x       = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
    dy      = .1*torch.randn_like(x)
    x.requires_grad_(True)
    # forward pass
    y_tri = layer_norm(x, w_shape, weight, bias, eps)
    y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
    # backward pass (triton)
    y_tri.backward(dy, retain_graph=True)
    dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
    x.grad, weight.grad, bias.grad = None, None, None
    # backward pass (torch)
    y_ref.backward(dy, retain_graph=True)
    dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
    # compare
    triton.testing.assert_almost_equal(y_tri, y_ref)
    triton.testing.assert_almost_equal(dx_tri, dx_ref)
    triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1)
    triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1)

@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=['N'],
        x_vals=[512 * i for i in range(2, 32)],
        line_arg='provider',
        line_vals=['triton', 'torch', 'apex'],
        line_names=['Triton', 'Torch', 'Apex'],
        styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
        ylabel='GB/s',
        plot_name='layer-norm-backward',
        args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}
    )
)
def bench_layer_norm(M, N, dtype, provider, mode='backward',eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight  = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias    = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x       = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
    dy      = .1*torch.randn_like(x)
    x.requires_grad_(True)
    # utility functions
    if provider == 'triton':
        y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'torch':
        y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'apex':
        import apex
        apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype)
        y_fwd = lambda: apex_layer_norm(x)
    # forward pass
    if mode == 'forward':
        gbps = lambda ms: 2*x.numel()*x.element_size()/ms*1e-6
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500)
    # backward pass
    if mode == 'backward':
        gbps = lambda ms: 3*x.numel()*x.element_size()/ms*1e-6
        y = y_fwd()
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True),
                                                     grad_to_none=[x], rep=500)
    return gbps(ms), gbps(max_ms), gbps(min_ms)

bench_layer_norm.run(save_path='.', print_data=True)

Total running time of the script: ( 2 minutes 11.692 seconds)

Gallery generated by Sphinx-Gallery