Layer NormalizationΒΆ

05 layer norm

Out:

layer-norm-backward:
          N      Triton       Torch        Apex
0    1024.0  307.200008   99.497980  311.088617
1    1536.0  347.773587  134.050910  344.523365
2    2048.0  423.724127  159.067963  321.254900
3    2560.0  458.507457  182.314537  326.808501
4    3072.0  515.580429  191.501303  317.793096
5    3584.0  551.384634  207.768111  308.301075
6    4096.0  564.965515  220.907859  296.096389
7    4608.0  498.162157  232.336141  291.799469
8    5120.0  527.381977  243.326731  291.184826
9    5632.0  540.671974  244.426754  290.683877
10   6144.0  548.163546  251.202731  286.879370
11   6656.0  534.260858  255.590406  286.279570
12   7168.0  516.612607  253.734520  277.919225
13   7680.0  488.912481  266.358392  280.547947
14   8192.0  463.698115  258.694729  278.087683
15   8704.0  416.127506  267.472468  284.987724
16   9216.0  429.483477  272.394084  289.887291
17   9728.0  437.213490  279.942444  288.950501
18  10240.0  446.836366  286.767793  289.811322
19  10752.0  429.364408  246.699797  289.941565
20  11264.0  430.471331  245.536784  286.069848
21  11776.0  421.198220  249.447482  288.686414
22  12288.0  418.314886  254.673582  294.323369
23  12800.0  414.016170  254.094291  287.910035
24  13312.0  412.242569  252.559690  289.129403
25  13824.0  404.604870  257.190689  291.799461
26  14336.0  395.930964  256.000002  289.129416
27  14848.0  386.498925  257.479779  289.012175
28  15360.0  376.547496  258.332158  286.656296
29  15872.0  369.116300  261.626369  290.784741

import torch
import triton.language as tl
import triton

# Forward Pass
@triton.jit
def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps, **META):
    BLOCK_SIZE = META['BLOCK_SIZE']
    # position of elements processed by this program
    row =  tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X += row * stride
    Y += row * stride
    # load data and cast to float32
    x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
    # compute mean
    mean = tl.sum(x, axis=0) / N
    # compute std
    xmean = tl.where(mask, x - mean, 0.)
    var   = tl.sum(xmean * xmean, axis=0) / N
    rstd  = 1 / tl.sqrt(var + eps)
    xhat  = xmean*rstd
    # write-back mean/rstd
    tl.store(M + row, mean)
    tl.store(V + row, rstd)
    # multiply by weight and add bias
    w = tl.load(W + cols, mask=mask)
    b = tl.load(B + cols, mask=mask)
    y = xhat * w + b
    # write-back
    tl.store(Y + cols, y, mask=mask)


# Backward pass (DX + partial DW + partial DB)
@triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock,
                       stride, N, eps,
                       **META):
    GROUP_SIZE_M = META['GROUP_SIZE_M']
    BLOCK_SIZE_N = META['BLOCK_SIZE_N']
    # position of elements processed by this program
    row =  tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE_N)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X  += row * stride
    DY += row * stride
    DX += row * stride
    # offset locks and weight/bias gradient pointer
    # each kernel instance accumulates partial sums for
    # DW and DB into one of GROUP_SIZE_M independent buffers
    # these buffers stay in the L2, which allow this kernel
    # to be fast
    lock_id = row % GROUP_SIZE_M
    Lock   += lock_id
    Count   = Lock + GROUP_SIZE_M
    DW      = DW + lock_id*N + cols
    DB      = DB + lock_id*N + cols
    # load data to SRAM
    x     = tl.load(X  + cols, mask=mask, other=0).to(tl.float32)
    dy    = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
    w     = tl.load(W  + cols, mask=mask).to(tl.float32)
    mean  = tl.load(M + row)
    rstd  = tl.load(V + row)
    # compute dx
    xhat  = (x - mean)*rstd
    wdy   = w * dy
    xhat  = tl.where(mask, xhat, 0.)
    wdy   = tl.where(mask, wdy , 0.)
    mean1 = tl.sum(xhat * wdy, axis=0) / N
    mean2 = tl.sum(wdy, axis=0) / N
    dx    = (wdy - (xhat*mean1 + mean2))*rstd
    # write-back dx
    tl.store(DX + cols, dx, mask=mask)
    # accumulate partial sums for dw/db
    partial_dw = (dy*xhat).to(w.dtype)
    partial_db = (dy).to(w.dtype)
    while tl.atomic_cas(Lock, 0, 1) == 1:
        pass
    count = tl.load(Count)
    # first store doesn't accumulate
    if count == 0:
        tl.atomic_xchg(Count, 1)
    else:
        partial_dw += tl.load(DW, mask=mask)
        partial_db += tl.load(DB, mask=mask)
    tl.store(DW, partial_dw, mask=mask)
    tl.store(DB, partial_db, mask=mask)
    # release lock
    tl.atomic_xchg(Lock, 0)

# Backward pass (total DW + total DB)
@triton.jit
def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, **meta):
    pid = tl.program_id(0)
    BLOCK_SIZE_M = meta['BLOCK_SIZE_M']
    BLOCK_SIZE_N = meta['BLOCK_SIZE_N']
    cols = pid*BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    dw   = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    db   = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(0, M, BLOCK_SIZE_M):
        rows = i + tl.arange(0, meta['BLOCK_SIZE_M'])
        mask = (rows[:, None] < M) & (cols[None, :] < N)
        offs = rows[:, None]*N + cols[None, :]
        dw += tl.load(DW + offs, mask=mask, other=0.)
        db += tl.load(DB + offs, mask=mask, other=0.)
    sum_dw = tl.sum(dw, axis=0)
    sum_db = tl.sum(db, axis=0)
    tl.store(FINAL_DW + cols, sum_dw, mask=cols<N)
    tl.store(FINAL_DB + cols, sum_db, mask=cols<N)

class LayerNorm(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, normalized_shape, weight, bias, eps):
        # allocate output
        y = torch.empty_like(x)
        # reshape input data into 2D tensor
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        mean = torch.empty((M, ), dtype=torch.float32, device='cuda')
        rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_SIZE     = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_SIZE:
            raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
        # heuristics for number of warps
        num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
        # enqueue kernel
        _layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd,
                                    x_arg.stride(0), N, eps,
                                    BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
        ctx.save_for_backward(x, weight, bias, mean, rstd)
        ctx.BLOCK_SIZE = BLOCK_SIZE
        ctx.num_warps  = num_warps
        ctx.eps        = eps
        return y

    @staticmethod
    def backward(ctx, dy):
        x, w, b, m, v = ctx.saved_tensors
        # heuristics for amount of parallel reduction stream for DG/DB
        N = w.shape[0]
        GROUP_SIZE_M = 64
        if N <= 8192: GROUP_SIZE_M = 96
        if N <= 4096: GROUP_SIZE_M = 128
        if N <= 1024: GROUP_SIZE_M = 256
        # allocate output
        locks = torch.zeros(2*GROUP_SIZE_M, dtype=torch.int32, device='cuda')
        _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        _db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        dw  = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        db  = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        dx = torch.empty_like(dy)
        # enqueue kernel using forward pass heuristics
        # also compute partial sums for DW and DB
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks,
                                       x_arg.stride(0), N, ctx.eps,
                                       BLOCK_SIZE_N=ctx.BLOCK_SIZE,
                                       GROUP_SIZE_M=GROUP_SIZE_M,
                                       num_warps=ctx.num_warps)
        grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])]
        # accumulate partial sums in separate kernel
        _layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N,
                                   BLOCK_SIZE_M = 32,
                                   BLOCK_SIZE_N = 128)
        return dx, None, dw, db, None


layer_norm = LayerNorm.apply


def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight  = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias    = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x       = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
    dy      = .1*torch.randn_like(x)
    x.requires_grad_(True)
    # forward pass
    y_tri = layer_norm(x, w_shape, weight, bias, eps)
    y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
    # backward pass (triton)
    y_tri.backward(dy, retain_graph=True)
    dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
    x.grad, weight.grad, bias.grad = None, None, None
    # backward pass (torch)
    y_ref.backward(dy, retain_graph=True)
    dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
    # compare
    triton.testing.assert_almost_equal(y_tri, y_ref)
    triton.testing.assert_almost_equal(dx_tri, dx_ref)
    triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1)
    triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1)

@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=['N'],
        x_vals=[512 * i for i in range(2, 32)],
        line_arg='provider',
        line_vals=['triton', 'torch', 'apex'],
        line_names=['Triton', 'Torch', 'Apex'],
        styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
        ylabel='GB/s',
        plot_name='layer-norm-backward',
        args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}
    )
)
def bench_layer_norm(M, N, dtype, provider, mode='backward',eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight  = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias    = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x       = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
    dy      = .1*torch.randn_like(x)
    x.requires_grad_(True)
    # utility functions
    if provider == 'triton':
        y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'torch':
        y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'apex':
        import apex
        apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype)
        y_fwd = lambda: apex_layer_norm(x)
    # forward pass
    if mode == 'forward':
        gbps = lambda ms: 2*x.numel()*x.element_size()/ms*1e-6
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500)
    # backward pass
    if mode == 'backward':
        gbps = lambda ms: 3*x.numel()*x.element_size()/ms*1e-6
        y = y_fwd()
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True),
                                                     grad_to_none=[x], rep=500)
    return gbps(ms), gbps(max_ms), gbps(min_ms)

bench_layer_norm.run(save_path='.', print_data=True)

Total running time of the script: ( 2 minutes 12.612 seconds)

Gallery generated by Sphinx-Gallery