Layer NormalizationΒΆ

05 layer norm

Out:

layer-norm:
          N      Triton       Torch        Apex
0    1024.0  585.142849  277.694907  468.114273
1    1536.0  630.153868  323.368435  511.999982
2    2048.0  682.666643  337.814445  520.126988
3    2560.0  694.237267  362.477870  512.000013
4    3072.0  712.347810  375.206126  501.551037
5    3584.0  725.873439  384.859062  458.751978
6    4096.0  728.177767  381.023256  455.111095
7    4608.0  670.254540  396.387087  426.173427
8    5120.0  688.403381  397.669909  424.455959
9    5632.0  704.000002  396.969169  411.470331
10   6144.0  702.171410  402.885254  409.600010
11   6656.0  705.271522  400.360920  398.861429
12   7168.0  695.078767  383.571898  382.293315
13   7680.0  682.666656  391.337574  386.415087
14   8192.0  639.375598  391.259714  376.643677
15   8704.0  627.315309  392.292962  381.545190
16   9216.0  609.322328  405.098894  382.010363
17   9728.0  591.817503  408.524944  383.369452
18  10240.0  568.888869  408.578556  382.803739
19  10752.0  551.384634  411.559798  380.601764
20  11264.0  536.380957  402.285709  371.595879
21  11776.0  524.835658  408.711507  377.587162
22  12288.0  517.389457  413.042029  382.505826
23  12800.0  505.679014  409.599981  377.163903
24  13312.0  495.330249  404.159395  376.310952
25  13824.0  482.934503  410.359948  378.739711
26  14336.0  470.997935  401.007000  372.969090
27  14848.0  461.297068  404.715511  374.122832
28  15360.0  454.269882  406.214870  377.511515
29  15872.0  447.887117  410.261713  377.343238

import torch

import triton
import triton.language as tl

try:
    # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it
    # should not be added to extras_require in setup.py.
    import apex
    HAS_APEX = True
except ModuleNotFoundError:
    HAS_APEX = False


@triton.jit
def _layer_norm_fwd_fused(
    Out,
    A,
    Weight,
    Bias,
    Mean, Rstd,
    stride, N, eps,
    BLOCK_SIZE: tl.constexpr,
):
    # position of elements processed by this program
    row = tl.program_id(0)
    Out += row * stride
    A += row * stride
    # compute mean
    mean = 0
    _mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
    for off in range(0, N, BLOCK_SIZE):
        cols = off + tl.arange(0, BLOCK_SIZE)
        a = tl.load(A + cols, mask=cols < N, other=0., eviction_policy="evict_last").to(tl.float32)
        _mean += a
    mean = tl.sum(_mean, axis=0) / N
    # compute variance
    _var = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
    for off in range(0, N, BLOCK_SIZE):
        cols = off + tl.arange(0, BLOCK_SIZE)
        a = tl.load(A + cols, mask=cols < N, other=0., eviction_policy="evict_last").to(tl.float32)
        a = tl.where(cols < N, a - mean, 0.)
        _var += a * a
    var = tl.sum(_var, axis=0) / N
    rstd = 1 / tl.sqrt(var + eps)
    # write-back mean/rstd
    tl.store(Mean + row, mean)
    tl.store(Rstd + row, rstd)
    # multiply by weight and add bias
    for off in range(0, N, BLOCK_SIZE):
        cols = off + tl.arange(0, BLOCK_SIZE)
        mask = cols < N
        weight = tl.load(Weight + cols, mask=mask)
        bias = tl.load(Bias + cols, mask=mask)
        a = tl.load(A + cols, mask=mask, other=0., eviction_policy="evict_first").to(tl.float32)
        a_hat = (a - mean) * rstd
        out = a_hat * weight + bias
        # # write-back
        tl.store(Out + cols, out, mask=mask)

# Backward pass (DA + partial DW + partial DB)


@triton.jit
def _layer_norm_bwd_dx_fused(
    _DA,
    _DOut,
    _A,
    Weight,
    Mean, Rstd,
    stride, NumRows, NumCols, eps,
    BLOCK_SIZE_N: tl.constexpr,
):
    # position of elements processed by this program
    pid = tl.program_id(0)
    row = pid
    A = _A + row * stride
    DOut = _DOut + row * stride
    DA = _DA + row * stride
    mean = tl.load(Mean + row)
    rstd = tl.load(Rstd + row)
    # load data to SRAM
    _mean1 = tl.zeros([BLOCK_SIZE_N], dtype=tl.float32)
    _mean2 = tl.zeros([BLOCK_SIZE_N], dtype=tl.float32)
    for off in range(0, NumCols, BLOCK_SIZE_N):
        cols = off + tl.arange(0, BLOCK_SIZE_N)
        mask = cols < NumCols
        a = tl.load(A + cols, mask=mask, other=0).to(tl.float32)
        dout = tl.load(DOut + cols, mask=mask, other=0).to(tl.float32)
        weight = tl.load(Weight + cols, mask=mask, other=0).to(tl.float32)
        a_hat = (a - mean) * rstd
        wdout = weight * dout
        _mean1 += a_hat * wdout
        _mean2 += wdout
    mean1 = tl.sum(_mean1, axis=0) / NumCols
    mean2 = 0.
    mean2 = tl.sum(_mean2, axis=0) / NumCols
    for off in range(0, NumCols, BLOCK_SIZE_N):
        cols = off + tl.arange(0, BLOCK_SIZE_N)
        mask = cols < NumCols
        a = tl.load(A + cols, mask=mask, other=0).to(tl.float32)
        dout = tl.load(DOut + cols, mask=mask, other=0).to(tl.float32)
        weight = tl.load(Weight + cols, mask=mask, other=0).to(tl.float32)
        a_hat = (a - mean) * rstd
        wdout = weight * dout
        da = (wdout - (a_hat * mean1 + mean2)) * rstd
        # write-back dx
        tl.store(DA + cols, da, mask=mask)


# Backward pass (total DW + total DB)
@triton.jit
def _layer_norm_bwd_dwdb(
    A, DOut,
    Mean, Var,
    DW,
    DB,
    M, N,
    BLOCK_SIZE_M: tl.constexpr,
    BLOCK_SIZE_N: tl.constexpr,
):
    pid = tl.program_id(0)
    cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(0, M, BLOCK_SIZE_M):
        rows = i + tl.arange(0, BLOCK_SIZE_M)
        mask = (rows[:, None] < M) & (cols[None, :] < N)
        offs = rows[:, None] * N + cols[None, :]
        a = tl.load(A + offs, mask=mask, other=0.).to(tl.float32)
        dout = tl.load(DOut + offs, mask=mask, other=0.).to(tl.float32)
        mean = tl.load(Mean + rows, mask=rows < M, other=0.)
        rstd = tl.load(Var + rows, mask=rows < M, other=0.)
        a_hat = (a - mean[:, None]) * rstd[:, None]
        dw += dout * a_hat
        db += dout
    sum_dw = tl.sum(dw, axis=0)
    sum_db = tl.sum(db, axis=0)
    tl.store(DW + cols, sum_dw, mask=cols < N)
    tl.store(DB + cols, sum_db, mask=cols < N)


class LayerNorm(torch.autograd.Function):
    @staticmethod
    def forward(ctx, a, normalized_shape, weight, bias, eps):
        # allocate output
        out = torch.empty_like(a)
        # reshape input data into 2D tensor
        a_arg = a.reshape(-1, a.shape[-1])
        M, N = a_arg.shape
        mean = torch.empty((M,), dtype=torch.float32, device="cuda")
        rstd = torch.empty((M,), dtype=torch.float32, device="cuda")
        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // a.element_size()
        BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        BLOCK_SIZE = max(BLOCK_SIZE, 128)
        BLOCK_SIZE = min(BLOCK_SIZE, 4096)
        # heuristics for number of warps
        num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
        _layer_norm_fwd_fused[(M,)](
            out,
            a_arg,
            weight,
            bias,
            mean, rstd,
            a_arg.stride(0), N, eps,
            BLOCK_SIZE=BLOCK_SIZE,
            num_warps=num_warps,
        )
        ctx.save_for_backward(
            a, weight, bias, mean, rstd,
        )
        ctx.BLOCK_SIZE = BLOCK_SIZE
        ctx.num_warps = num_warps
        ctx.eps = eps
        if hasattr(bias, "config"):
            assert bias.config.grad_scale_name == weight.config.grad_scale_name
            grad_scale_name = bias.config.grad_scale_name
        else:
            grad_scale_name = None
        ctx.grad_scale_gain_bias_name = grad_scale_name
        return out

    @staticmethod
    def backward(ctx, dout):
        assert dout.is_contiguous()
        a, weight, bias, mean, var = ctx.saved_tensors
        # heuristics for amount of parallel reduction stream for DG/DB
        N = weight.shape[0]
        # allocate output
        da = torch.empty_like(dout)
        # enqueue kernel using forward pass heuristics
        # also compute partial sums for DW and DB
        x_arg = a.reshape(-1, a.shape[-1])
        M, N = x_arg.shape
        dweight = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device)
        dbias = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device)
        _layer_norm_bwd_dx_fused[(M,)](
            da,
            dout,
            a,
            weight,
            mean, var,
            x_arg.stride(0), M, N,
            ctx.eps,
            BLOCK_SIZE_N=ctx.BLOCK_SIZE,
            num_warps=ctx.num_warps,
        )
        # accumulate partial sums in separate kernel
        grid = lambda meta: [triton.cdiv(N, meta["BLOCK_SIZE_N"])]
        _layer_norm_bwd_dwdb[grid](
            a, dout,
            mean, var,
            dweight,
            dbias,
            M,
            N,
            BLOCK_SIZE_M=32,
            BLOCK_SIZE_N=128,
        )
        return (da, None, dweight, dbias, None, None,
                None, None, None, None,
                None,
                None, None, None,
                None,
                None, None, None,
                None, None, None,
                None, None, None)


def layer_norm(a, normalized_shape, weight, bias, eps):
    return LayerNorm.apply(a, normalized_shape, weight, bias, eps)


def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
    torch.manual_seed(0)
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
    dy = .1 * torch.randn_like(x)
    x.requires_grad_(True)
    # forward pass
    y_tri = layer_norm(x, w_shape, weight, bias, eps)
    y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
    # backward pass (triton)
    y_tri.backward(dy, retain_graph=True)
    dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
    x.grad, weight.grad, bias.grad = None, None, None
    # backward pass (torch)
    y_ref.backward(dy, retain_graph=True)
    dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
    # compare
    triton.testing.assert_almost_equal(y_tri, y_ref)
    triton.testing.assert_almost_equal(dx_tri, dx_ref)
    triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1)
    triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1)


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=['N'],
        x_vals=[512 * i for i in range(2, 32)],
        line_arg='provider',
        line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []),
        line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []),
        styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
        ylabel='GB/s',
        plot_name='layer-norm',
        args={'M': 4096, 'dtype': torch.float16, 'mode': 'forward'}
    )
)
def bench_layer_norm(M, N, dtype, provider, mode, eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
    dy = .1 * torch.randn_like(x)
    x.requires_grad_(True)
    # utility functions
    if provider == 'triton':
        y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'torch':
        y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'apex':
        apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype)
        y_fwd = lambda: apex_layer_norm(x)
    # forward pass
    if mode == 'forward':
        gbps = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500)
    # backward pass
    if mode == 'backward':
        gbps = lambda ms: 3 * x.numel() * x.element_size() / ms * 1e-6
        y = y_fwd()
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True),
                                                     grad_to_none=[x], rep=500)
    return gbps(ms), gbps(max_ms), gbps(min_ms)


# test_layer_norm(1151, 8192, torch.float16)
bench_layer_norm.run(save_path='.', print_data=True)

Total running time of the script: ( 5 minutes 24.150 seconds)

Gallery generated by Sphinx-Gallery