Layer NormalizationΒΆ

05 layer norm

Out:

layer-norm-backward:
          N      Triton       Torch        Apex
0    1024.0  311.088617   99.497980  311.088617
1    1536.0  354.461542  133.565214  338.201833
2    2048.0  420.102553  162.754967  325.509933
3    2560.0  461.954908  182.857144  330.322572
4    3072.0  511.999982  191.501303  312.406770
5    3584.0  547.872604  208.271186  309.410081
6    4096.0  568.231237  220.412561  300.623865
7    4608.0  500.416301  231.364016  289.507855
8    5120.0  522.893618  242.845844  286.433562
9    5632.0  542.843364  242.671458  287.591490
10   6144.0  542.117638  250.349744  286.879370
11   6656.0  534.260858  255.182111  284.242007
12   7168.0  513.528374  255.619613  279.726817
13   7680.0  481.253256  263.314295  277.590365
14   8192.0  463.698115  266.406514  277.694924
15   8704.0  417.791980  263.757583  281.530996
16   9216.0  429.483477  272.394084  289.507855
17   9728.0  438.033784  281.630872  289.667485
18  10240.0  446.836366  285.435547  287.775181
19  10752.0  431.518385  246.464170  290.922209
20  11264.0  429.786952  245.760001  287.897767
21  11776.0  421.826879  249.447482  288.686414
22  12288.0  419.504980  254.673582  294.617366
23  12800.0  415.696898  253.465340  288.721817
24  13312.0  410.125805  250.775503  288.867982
25  13824.0  404.604870  257.190689  292.056329
26  14336.0  399.146178  255.429842  288.160801
27  14848.0  381.942121  256.184041  287.496569
28  15360.0  373.495460  259.605636  288.902809
29  15872.0  368.046389  262.527914  291.006885

import torch
import triton.language as tl
import triton

# Forward Pass
@triton.jit
def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps, **META):
    BLOCK_SIZE = META['BLOCK_SIZE']
    # position of elements processed by this program
    row =  tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X += row * stride
    Y += row * stride
    # load data and cast to float32
    x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
    # compute mean
    mean = tl.sum(x, axis=0) / N
    # compute std
    xmean = tl.where(mask, x - mean, 0.)
    var   = tl.sum(xmean * xmean, axis=0) / N
    rstd  = 1 / tl.sqrt(var + eps)
    xhat  = xmean*rstd
    # write-back mean/rstd
    tl.store(M + row, mean)
    tl.store(V + row, rstd)
    # multiply by weight and add bias
    w = tl.load(W + cols, mask=mask)
    b = tl.load(B + cols, mask=mask)
    y = xhat * w + b
    # write-back
    tl.store(Y + cols, y, mask=mask)


# Backward pass (DX + partial DW + partial DB)
@triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock,
                       stride, N, eps,
                       **META):
    GROUP_SIZE_M = META['GROUP_SIZE_M']
    BLOCK_SIZE_N = META['BLOCK_SIZE_N']
    # position of elements processed by this program
    row =  tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE_N)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X  += row * stride
    DY += row * stride
    DX += row * stride
    # offset locks and weight/bias gradient pointer
    # each kernel instance accumulates partial sums for
    # DW and DB into one of GROUP_SIZE_M independent buffers
    # these buffers stay in the L2, which allow this kernel
    # to be fast
    lock_id = row % GROUP_SIZE_M
    Lock   += lock_id
    Count   = Lock + GROUP_SIZE_M
    DW      = DW + lock_id*N + cols
    DB      = DB + lock_id*N + cols
    # load data to SRAM
    x     = tl.load(X  + cols, mask=mask, other=0).to(tl.float32)
    dy    = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
    w     = tl.load(W  + cols, mask=mask).to(tl.float32)
    mean  = tl.load(M + row)
    rstd  = tl.load(V + row)
    # compute dx
    xhat  = (x - mean)*rstd
    wdy   = w * dy
    xhat  = tl.where(mask, xhat, 0.)
    wdy   = tl.where(mask, wdy , 0.)
    mean1 = tl.sum(xhat * wdy, axis=0) / N
    mean2 = tl.sum(wdy, axis=0) / N
    dx    = (wdy - (xhat*mean1 + mean2))*rstd
    # write-back dx
    tl.store(DX + cols, dx, mask=mask)
    # accumulate partial sums for dw/db
    partial_dw = (dy*xhat).to(w.dtype)
    partial_db = (dy).to(w.dtype)
    while tl.atomic_cas(Lock, 0, 1) == 1:
        pass
    count = tl.load(Count)
    # first store doesn't accumulate
    if count == 0:
        tl.atomic_xchg(Count, 1)
    else:
        partial_dw += tl.load(DW, mask=mask)
        partial_db += tl.load(DB, mask=mask)
    tl.store(DW, partial_dw, mask=mask)
    tl.store(DB, partial_db, mask=mask)
    # release lock
    tl.atomic_xchg(Lock, 0)

# Backward pass (total DW + total DB)
@triton.jit
def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, **meta):
    pid = tl.program_id(0)
    BLOCK_SIZE_M = meta['BLOCK_SIZE_M']
    BLOCK_SIZE_N = meta['BLOCK_SIZE_N']
    cols = pid*BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    dw   = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    db   = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(0, M, BLOCK_SIZE_M):
        rows = i + tl.arange(0, meta['BLOCK_SIZE_M'])
        mask = (rows[:, None] < M) & (cols[None, :] < N)
        offs = rows[:, None]*N + cols[None, :]
        dw += tl.load(DW + offs, mask=mask, other=0.)
        db += tl.load(DB + offs, mask=mask, other=0.)
    sum_dw = tl.sum(dw, axis=0)
    sum_db = tl.sum(db, axis=0)
    tl.store(FINAL_DW + cols, sum_dw, mask=cols<N)
    tl.store(FINAL_DB + cols, sum_db, mask=cols<N)

class LayerNorm(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, normalized_shape, weight, bias, eps):
        # allocate output
        y = torch.empty_like(x)
        # reshape input data into 2D tensor
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        mean = torch.empty((M, ), dtype=torch.float32, device='cuda')
        rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_SIZE     = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_SIZE:
            raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
        # heuristics for number of warps
        num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
        # enqueue kernel
        _layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd,
                                    x_arg.stride(0), N, eps,
                                    BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
        ctx.save_for_backward(x, weight, bias, mean, rstd)
        ctx.BLOCK_SIZE = BLOCK_SIZE
        ctx.num_warps  = num_warps
        ctx.eps        = eps
        return y

    @staticmethod
    def backward(ctx, dy):
        x, w, b, m, v = ctx.saved_tensors
        # heuristics for amount of parallel reduction stream for DG/DB
        N = w.shape[0]
        GROUP_SIZE_M = 64
        if N <= 8192: GROUP_SIZE_M = 96
        if N <= 4096: GROUP_SIZE_M = 128
        if N <= 1024: GROUP_SIZE_M = 256
        # allocate output
        locks = torch.zeros(2*GROUP_SIZE_M, dtype=torch.int32, device='cuda')
        _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        _db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        dw  = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        db  = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        dx = torch.empty_like(dy)
        # enqueue kernel using forward pass heuristics
        # also compute partial sums for DW and DB
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks,
                                       x_arg.stride(0), N, ctx.eps,
                                       BLOCK_SIZE_N=ctx.BLOCK_SIZE,
                                       GROUP_SIZE_M=GROUP_SIZE_M,
                                       num_warps=ctx.num_warps)
        grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])]
        # accumulate partial sums in separate kernel
        _layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N,
                                   BLOCK_SIZE_M = 32,
                                   BLOCK_SIZE_N = 128)
        return dx, None, dw, db, None


layer_norm = LayerNorm.apply


def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight  = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias    = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x       = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
    dy      = .1*torch.randn_like(x)
    x.requires_grad_(True)
    # forward pass
    y_tri = layer_norm(x, w_shape, weight, bias, eps)
    y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
    # backward pass (triton)
    y_tri.backward(dy, retain_graph=True)
    dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
    x.grad, weight.grad, bias.grad = None, None, None
    # backward pass (torch)
    y_ref.backward(dy, retain_graph=True)
    dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
    # compare
    triton.testing.assert_almost_equal(y_tri, y_ref)
    triton.testing.assert_almost_equal(dx_tri, dx_ref)
    triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1)
    triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1)

@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=['N'],
        x_vals=[512 * i for i in range(2, 32)],
        line_arg='provider',
        line_vals=['triton', 'torch', 'apex'],
        line_names=['Triton', 'Torch', 'Apex'],
        styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
        ylabel='GB/s',
        plot_name='layer-norm-backward',
        args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}
    )
)
def bench_layer_norm(M, N, dtype, provider, mode='backward',eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight  = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias    = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x       = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
    dy      = .1*torch.randn_like(x)
    x.requires_grad_(True)
    # utility functions
    if provider == 'triton':
        y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'torch':
        y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'apex':
        import apex
        apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype)
        y_fwd = lambda: apex_layer_norm(x)
    # forward pass
    if mode == 'forward':
        gbps = lambda ms: 2*x.numel()*x.element_size()/ms*1e-6
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500)
    # backward pass
    if mode == 'backward':
        gbps = lambda ms: 3*x.numel()*x.element_size()/ms*1e-6
        y = y_fwd()
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True),
                                                     grad_to_none=[x], rep=500)
    return gbps(ms), gbps(max_ms), gbps(min_ms)

bench_layer_norm.run(save_path='.', print_data=True)

Total running time of the script: ( 2 minutes 12.763 seconds)

Gallery generated by Sphinx-Gallery