Layer NormalizationΒΆ

05 layer norm

Out:

layer-norm-backward:
          N      Triton       Torch        Apex
0    1024.0  311.088617   97.912354  303.407414
1    1536.0  351.085717  135.032961  341.333333
2    2048.0  427.408686  161.154101  329.879196
3    2560.0  465.454542  181.238943  332.108113
4    3072.0  519.211251  192.501302  321.956335
5    3584.0  554.941930  208.776702  311.652167
6    4096.0  571.534884  220.412561  299.707322
7    4608.0  500.416301  233.316456  286.507772
8    5120.0  527.381977  241.889751  282.482762
9    5632.0  542.843364  243.107920  291.310338
10   6144.0  544.118087  249.081070  286.879370
11   6656.0  528.953642  256.000009  286.279570
12   7168.0  508.970395  259.867079  285.767449
13   7680.0  483.779539  263.314295  279.272719
14   8192.0  461.521112  267.493874  284.939124
15   8704.0  416.127506  267.815384  285.377055
16   9216.0  431.157889  271.724806  289.129410
17   9728.0  438.033784  280.615388  289.308559
18  10240.0  447.650282  286.767793  290.153487
19  10752.0  430.797982  246.699797  290.267711
20  11264.0  429.104745  245.760001  287.285864
21  11776.0  423.089806  249.667843  288.981596
22  12288.0  418.909088  254.673582  294.911986
23  12800.0  415.696898  253.256381  289.538159
24  13312.0  412.242569  252.759501  290.707920
25  13824.0  405.594132  257.190689  292.313649
26  14336.0  398.683664  254.485198  286.959121
27  14848.0  385.245405  257.479779  289.717061
28  15360.0  376.547496  258.151252  287.326580
29  15872.0  368.402336  261.986243  289.899545

import torch
import triton.language as tl
import triton

# Forward Pass
@triton.jit
def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps, **META):
    BLOCK_SIZE = META['BLOCK_SIZE']
    # position of elements processed by this program
    row =  tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X += row * stride
    Y += row * stride
    # load data and cast to float32
    x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
    # compute mean
    mean = tl.sum(x, axis=0) / N
    # compute std
    xmean = tl.where(mask, x - mean, 0.)
    var   = tl.sum(xmean * xmean, axis=0) / N
    rstd  = 1 / tl.sqrt(var + eps)
    xhat  = xmean*rstd
    # write-back mean/rstd
    tl.store(M + row, mean)
    tl.store(V + row, rstd)
    # multiply by weight and add bias
    w = tl.load(W + cols, mask=mask)
    b = tl.load(B + cols, mask=mask)
    y = xhat * w + b
    # write-back
    tl.store(Y + cols, y, mask=mask)


# Backward pass (DX + partial DW + partial DB)
@triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock,
                       stride, N, eps,
                       **META):
    GROUP_SIZE_M = META['GROUP_SIZE_M']
    BLOCK_SIZE_N = META['BLOCK_SIZE_N']
    # position of elements processed by this program
    row =  tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE_N)
    mask = cols < N
    # offset data pointers to start at the row of interest
    X  += row * stride
    DY += row * stride
    DX += row * stride
    # offset locks and weight/bias gradient pointer
    # each kernel instance accumulates partial sums for
    # DW and DB into one of GROUP_SIZE_M independent buffers
    # these buffers stay in the L2, which allow this kernel
    # to be fast
    lock_id = row % GROUP_SIZE_M
    Lock   += lock_id
    Count   = Lock + GROUP_SIZE_M
    DW      = DW + lock_id*N + cols
    DB      = DB + lock_id*N + cols
    # load data to SRAM
    x     = tl.load(X  + cols, mask=mask, other=0).to(tl.float32)
    dy    = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
    w     = tl.load(W  + cols, mask=mask).to(tl.float32)
    mean  = tl.load(M + row)
    rstd  = tl.load(V + row)
    # compute dx
    xhat  = (x - mean)*rstd
    wdy   = w * dy
    xhat  = tl.where(mask, xhat, 0.)
    wdy   = tl.where(mask, wdy , 0.)
    mean1 = tl.sum(xhat * wdy, axis=0) / N
    mean2 = tl.sum(wdy, axis=0) / N
    dx    = (wdy - (xhat*mean1 + mean2))*rstd
    # write-back dx
    tl.store(DX + cols, dx, mask=mask)
    # accumulate partial sums for dw/db
    partial_dw = (dy*xhat).to(w.dtype)
    partial_db = (dy).to(w.dtype)
    while tl.atomic_cas(Lock, 0, 1) == 1:
        pass
    count = tl.load(Count)
    # first store doesn't accumulate
    if count == 0:
        tl.atomic_xchg(Count, 1)
    else:
        partial_dw += tl.load(DW, mask=mask)
        partial_db += tl.load(DB, mask=mask)
    tl.store(DW, partial_dw, mask=mask)
    tl.store(DB, partial_db, mask=mask)
    # release lock
    tl.atomic_xchg(Lock, 0)

# Backward pass (total DW + total DB)
@triton.jit
def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N, **meta):
    pid = tl.program_id(0)
    BLOCK_SIZE_M = meta['BLOCK_SIZE_M']
    BLOCK_SIZE_N = meta['BLOCK_SIZE_N']
    cols = pid*BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    dw   = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    db   = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(0, M, BLOCK_SIZE_M):
        rows = i + tl.arange(0, meta['BLOCK_SIZE_M'])
        mask = (rows[:, None] < M) & (cols[None, :] < N)
        offs = rows[:, None]*N + cols[None, :]
        dw += tl.load(DW + offs, mask=mask, other=0.)
        db += tl.load(DB + offs, mask=mask, other=0.)
    sum_dw = tl.sum(dw, axis=0)
    sum_db = tl.sum(db, axis=0)
    tl.store(FINAL_DW + cols, sum_dw, mask=cols<N)
    tl.store(FINAL_DB + cols, sum_db, mask=cols<N)

class LayerNorm(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, normalized_shape, weight, bias, eps):
        # allocate output
        y = torch.empty_like(x)
        # reshape input data into 2D tensor
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        mean = torch.empty((M, ), dtype=torch.float32, device='cuda')
        rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_SIZE     = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_SIZE:
            raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
        # heuristics for number of warps
        num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
        # enqueue kernel
        _layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd,
                                    x_arg.stride(0), N, eps,
                                    BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
        ctx.save_for_backward(x, weight, bias, mean, rstd)
        ctx.BLOCK_SIZE = BLOCK_SIZE
        ctx.num_warps  = num_warps
        ctx.eps        = eps
        return y

    @staticmethod
    def backward(ctx, dy):
        x, w, b, m, v = ctx.saved_tensors
        # heuristics for amount of parallel reduction stream for DG/DB
        N = w.shape[0]
        GROUP_SIZE_M = 64
        if N <= 8192: GROUP_SIZE_M = 96
        if N <= 4096: GROUP_SIZE_M = 128
        if N <= 1024: GROUP_SIZE_M = 256
        # allocate output
        locks = torch.zeros(2*GROUP_SIZE_M, dtype=torch.int32, device='cuda')
        _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        _db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
        dw  = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        db  = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
        dx = torch.empty_like(dy)
        # enqueue kernel using forward pass heuristics
        # also compute partial sums for DW and DB
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks,
                                       x_arg.stride(0), N, ctx.eps,
                                       BLOCK_SIZE_N=ctx.BLOCK_SIZE,
                                       GROUP_SIZE_M=GROUP_SIZE_M,
                                       num_warps=ctx.num_warps)
        grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])]
        # accumulate partial sums in separate kernel
        _layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N,
                                   BLOCK_SIZE_M = 32,
                                   BLOCK_SIZE_N = 128)
        return dx, None, dw, db, None


layer_norm = LayerNorm.apply


def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight  = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias    = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x       = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
    dy      = .1*torch.randn_like(x)
    x.requires_grad_(True)
    # forward pass
    y_tri = layer_norm(x, w_shape, weight, bias, eps)
    y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
    # backward pass (triton)
    y_tri.backward(dy, retain_graph=True)
    dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
    x.grad, weight.grad, bias.grad = None, None, None
    # backward pass (torch)
    y_ref.backward(dy, retain_graph=True)
    dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
    # compare
    triton.testing.assert_almost_equal(y_tri, y_ref)
    triton.testing.assert_almost_equal(dx_tri, dx_ref)
    triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1)
    triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1)

@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=['N'],
        x_vals=[512 * i for i in range(2, 32)],
        line_arg='provider',
        line_vals=['triton', 'torch', 'apex'],
        line_names=['Triton', 'Torch', 'Apex'],
        styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
        ylabel='GB/s',
        plot_name='layer-norm-backward',
        args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}
    )
)
def bench_layer_norm(M, N, dtype, provider, mode='backward',eps=1e-5, device='cuda'):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight  = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    bias    = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
    x       = -2.3 + 0.5*torch.randn(x_shape, dtype=dtype, device='cuda')
    dy      = .1*torch.randn_like(x)
    x.requires_grad_(True)
    # utility functions
    if provider == 'triton':
        y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'torch':
        y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)
    if provider == 'apex':
        import apex
        apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype)
        y_fwd = lambda: apex_layer_norm(x)
    # forward pass
    if mode == 'forward':
        gbps = lambda ms: 2*x.numel()*x.element_size()/ms*1e-6
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500)
    # backward pass
    if mode == 'backward':
        gbps = lambda ms: 3*x.numel()*x.element_size()/ms*1e-6
        y = y_fwd()
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True),
                                                     grad_to_none=[x], rep=500)
    return gbps(ms), gbps(max_ms), gbps(min_ms)

bench_layer_norm.run(save_path='.', print_data=True)

Total running time of the script: ( 2 minutes 9.504 seconds)

Gallery generated by Sphinx-Gallery