Files
triton/python/examples/dot.py
Philippe Tillet 321d268a4a more progress
2019-08-25 21:26:09 -07:00

129 lines
3.0 KiB
Python

import triton
import tensorflow as tf
import numpy as np
src = """
#if AT == 1
#define USEA ^a
#else
#define USEA a
#endif
#if BT == 1
#define USEB ^b
#else
#define USEB b
#endif
void dot(TYPE * A __noalias __readonly __aligned(16),
TYPE * B __noalias __readonly __aligned(16),
TYPE * C __noalias __readonly __aligned(16),
int M, int N, int K,
int lda __multipleof(8),
int ldb __multipleof(8),
int ldc) {
int ridx = get_program_id(0);
int ridy = get_program_id(1);
int rxa[TM] = ridx * TM + 0 ... TM;
int ryb[TN] = ridy * TN + 0 ... TN;
int rka[TK] = 0 ... TK;
int rkb[TK] = 0 ... TK;
float xc[TM, TN] = 0;
/* pointers for A */
#if AT == 1
TYPE* pa[TK, TM] = A + rka[:, newaxis] + rxa[newaxis, :]*lda;
TYPE a[TK, TM] = *pa;
#else
TYPE* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis];
TYPE a[TM, TK] = *pa;
#endif
/* pointers for B */
#if BT == 1
TYPE* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis];
TYPE b[TN, TK] = *pb;
#else
TYPE* pb[TK, TN] = B + rkb[:, newaxis] + ryb[newaxis, :]*ldb;
TYPE b[TK, TN] = *pb;
#endif
/* reduction loop */
for(int k = K; k > 0; k = k - TK){
xc = USEA @ USEB + xc;
#if AT == 1
pa = pa + TK;
#else
pa = pa + TK*lda;
#endif
#if BT == 1
pb = pb + TK*ldb;
#else
pb = pb + TK;
#endif
a = *pa;
b = *pb;
}
/* epilogue */
int rxc[TM] = ridx * TM + (0 ... TM);
int ryc[TN] = ridy * TN + (0 ... TN);
TYPE* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis];
TYPE c[TM, TN] = xc;
bool checkc0[TM] = rxc < M;
bool checkc1[TN] = ryc < N;
bool checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
*pc = c;
}
"""
def cdiv(a, b):
return -(-a // b)
class dot:
def __init__(self, trans_a = False, trans_b = True):
self.dot = triton.op(src, ['C'])
self.trans_a = trans_a
self.trans_b = trans_b
def __call__(self, a, b):
shape_a = tf.shape(a)
shape_b = tf.shape(b)
M = shape_a[0]
K = shape_a[1]
N = shape_b[0]
lda = M
ldb = K
ldc = N
c = triton.empty([M, N])
return self.dot(a, b, c, M, N, K, lda, ldb, ldc,
lambda opt: [cdiv(M, opt.D('TM')), cdiv(N, opt.D('TN')), 1],
AT = self.trans_a, BT = self.trans_b, TYPE = tf.float16,
TM = [128], TN = [128], TK = [32])
dot_tn = dot()
def run_dot():
M, N, K = 128, 128, 128
a = tf.placeholder(tf.float16, shape=[M, K])
b = tf.placeholder(tf.float16, shape=[N, K])
# c = tf.matmul(a, b, transpose_a=True)
c = dot_tn(a, b)
# Reference
ha = np.random.rand(M, K).astype(np.float16)
hb = np.random.rand(N, K).astype(np.float16)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([c], feed_dict = {a: ha,
b: hb})[0]
# Test
hresult = np.dot(ha.T, hb)
dif = np.abs(result - hresult)
np.savetxt('dif.dat', dif, '%2.4f')
print(hresult)
print(result)
print("dif: %f" % np.max(dif))
run_dot()