66 lines
2.5 KiB
Python
66 lines
2.5 KiB
Python
import array
|
|
import numpy as np
|
|
import random
|
|
import sys
|
|
|
|
import itertools
|
|
import tools
|
|
import deap.tools
|
|
|
|
from deap import base
|
|
from deap import creator
|
|
from genetic import GeneticOperators
|
|
from genetic import eaMuPlusLambda
|
|
|
|
def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
|
device = context.devices[0]
|
|
nvalid = 0
|
|
current = 0
|
|
minT = float('inf')
|
|
for individual in itertools.product(*all_parameters):
|
|
template = build_template(TemplateType.Parameters(*individual))
|
|
if not tools.skip(template, statement, device):
|
|
nvalid = nvalid + 1
|
|
for individual in itertools.product(*all_parameters):
|
|
template = build_template(TemplateType.Parameters(*individual))
|
|
try:
|
|
T = tools.benchmark(template,statement,device)
|
|
current = current + 1
|
|
if T < minT:
|
|
minT = T
|
|
best = individual
|
|
sys.stdout.write('%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best))
|
|
sys.stdout.flush()
|
|
except:
|
|
pass
|
|
sys.stdout.write('\n')
|
|
sys.stdout.flush()
|
|
|
|
|
|
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
|
gen = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
|
|
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
|
creator.create("Individual", list, fitness=creator.FitnessMin)
|
|
|
|
toolbox = base.Toolbox()
|
|
toolbox.register("individual", tools.initIterate, creator.Individual, gen.init)
|
|
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
|
toolbox.register("evaluate", gen.evaluate)
|
|
toolbox.register("mate", tools.cxTwoPoint)
|
|
toolbox.decorate("mate", gen.repair)
|
|
toolbox.register("mutate", gen.mutate)
|
|
toolbox.decorate("mutate", gen.repair)
|
|
toolbox.register("select", tools.selBest)
|
|
|
|
pop = toolbox.population(n=30)
|
|
hof = deap.tools.HallOfFame(1)
|
|
|
|
best_performer = lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x])
|
|
best_profile = lambda x: '(%s)'%','.join(map(str,hof[0]))
|
|
|
|
stats = deap.tools.Statistics(lambda ind: ind.fitness.values)
|
|
stats.register("max (" + perf_metric + ")", lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x]))
|
|
stats.register("profile ", lambda x: '(%s)'%','.join(map(str,hof[0])))
|
|
|
|
pop = eaMuPlusLambda(pop, toolbox, 30, 50, cxpb=0.2, mutpb=0.3, maxtime='3m0s', maxgen=200, halloffame=hof, compute_perf=compute_perf, perf_metric=perf_metric)
|