Files
triton/autotune/python/optimize.py

66 lines
2.5 KiB
Python
Raw Normal View History

2014-09-02 22:03:20 -04:00
import array
import numpy as np
import random
2014-09-11 18:17:24 -04:00
import sys
2014-09-02 22:03:20 -04:00
2014-09-11 16:13:46 -04:00
import itertools
import tools
import deap.tools
2014-09-02 22:03:20 -04:00
2014-09-11 16:13:46 -04:00
from deap import base
from deap import creator
from genetic import GeneticOperators
from genetic import eaMuPlusLambda
def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
device = context.devices[0]
nvalid = 0
current = 0
minT = float('inf')
for individual in itertools.product(*all_parameters):
template = build_template(TemplateType.Parameters(*individual))
if not tools.skip(template, statement, device):
nvalid = nvalid + 1
for individual in itertools.product(*all_parameters):
template = build_template(TemplateType.Parameters(*individual))
try:
T = tools.benchmark(template,statement,device)
current = current + 1
if T < minT:
minT = T
best = individual
sys.stdout.write('%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best))
sys.stdout.flush()
2014-09-11 16:13:46 -04:00
except:
pass
sys.stdout.write('\n')
sys.stdout.flush()
2014-09-02 22:03:20 -04:00
2014-09-11 16:13:46 -04:00
2014-09-02 22:03:20 -04:00
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
gen = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("individual", tools.initIterate, creator.Individual, gen.init)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", gen.evaluate)
2014-09-10 11:10:19 -04:00
toolbox.register("mate", tools.cxTwoPoint)
2014-09-02 22:03:20 -04:00
toolbox.decorate("mate", gen.repair)
2014-09-10 11:10:19 -04:00
toolbox.register("mutate", gen.mutate)
2014-09-02 22:03:20 -04:00
toolbox.decorate("mutate", gen.repair)
2014-09-11 13:37:36 -04:00
toolbox.register("select", tools.selBest)
2014-09-02 22:03:20 -04:00
2014-09-10 11:10:19 -04:00
pop = toolbox.population(n=30)
2014-09-11 16:13:46 -04:00
hof = deap.tools.HallOfFame(1)
2014-09-02 22:03:20 -04:00
best_performer = lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x])
best_profile = lambda x: '(%s)'%','.join(map(str,hof[0]))
2014-09-11 16:13:46 -04:00
stats = deap.tools.Statistics(lambda ind: ind.fitness.values)
2014-09-02 22:03:20 -04:00
stats.register("max (" + perf_metric + ")", lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x]))
stats.register("profile ", lambda x: '(%s)'%','.join(map(str,hof[0])))
2014-09-11 13:37:36 -04:00
pop = eaMuPlusLambda(pop, toolbox, 30, 50, cxpb=0.2, mutpb=0.3, maxtime='3m0s', maxgen=200, halloffame=hof, compute_perf=compute_perf, perf_metric=perf_metric)