benchmarks * DNN: Added partial auto-tuning mode and skeleton for heuristics * Examples: Moduralized benchmarking and now evaluating ResNet-18 shapes
115 lines
3.7 KiB
C++
115 lines
3.7 KiB
C++
#include <cstring>
|
|
#include <cstdio>
|
|
#include <sstream>
|
|
#include "triton/runtime/jit.h"
|
|
#include "triton/driver/backend.h"
|
|
#include "triton/driver/stream.h"
|
|
#include "triton/tools/bench.hpp"
|
|
#include "triton/dnn/shift.h"
|
|
#include "triton/external/half.hpp"
|
|
|
|
double do_bench(triton::driver::context* context,
|
|
int32_t R, int32_t S, int32_t B, int32_t F, int32_t H, int32_t W, int32_t C,
|
|
triton::dnn::op_t op, triton::dnn::layout_t layout,
|
|
std::string numeric_t) {
|
|
typedef float NumericT;
|
|
|
|
// random shifts
|
|
std::vector<int32_t> shift_h(C);
|
|
std::vector<int32_t> shift_w(C);
|
|
for(int32_t c = 0; c < C; c++){
|
|
shift_h[c] = rand() % R - R / 2;
|
|
shift_w[c] = rand() % S - S / 2;
|
|
}
|
|
// configuration
|
|
triton::dnn::shift shift(B, C, 1, H, W, 1, R, S, F, 1, 1,
|
|
shift_h.data(), shift_w.data(),
|
|
numeric_t, numeric_t,
|
|
op, false, layout);
|
|
// host buffers
|
|
size_t a_size = B*C*H*W;
|
|
size_t b_size = C*F;
|
|
size_t c_size = B*F*H*W;
|
|
if(op == triton::dnn::BPROP)
|
|
std::swap(a_size, c_size);
|
|
if(op == triton::dnn::WGRAD){
|
|
std::swap(b_size, c_size);
|
|
std::swap(a_size, b_size);
|
|
}
|
|
std::vector<NumericT> ha(a_size);
|
|
std::vector<NumericT> hb(b_size);
|
|
std::vector<float> hc(c_size);
|
|
std::vector<float> rc(hc.size());
|
|
// device buffers
|
|
triton::driver::buffer* dc = triton::driver::buffer::create(context, hc.size()*4);
|
|
triton::driver::buffer* da = triton::driver::buffer::create(context, ha.size()*sizeof(NumericT));
|
|
triton::driver::buffer* db = triton::driver::buffer::create(context, hb.size()*sizeof(NumericT));
|
|
triton::driver::stream* stream = triton::driver::stream::create(context);
|
|
// initialize host
|
|
srand(0);
|
|
for(size_t i = 0; i < ha.size(); i++)
|
|
ha[i] = (NumericT)rand() / RAND_MAX;
|
|
for(size_t i = 0; i < hb.size(); i++)
|
|
hb[i] = (NumericT)rand() / RAND_MAX;
|
|
for(size_t i = 0; i < hc.size(); i++)
|
|
hc[i] = 0;
|
|
// initialize device
|
|
stream->write(da, true, 0, ha);
|
|
stream->write(db, true, 0, hb);
|
|
stream->write(dc, true, 0, hc);
|
|
stream->synchronize();
|
|
double nanosec = triton::tools::bench([&]() { shift.enqueue(stream, {da, db, dc});}, stream);
|
|
return shift.num_flops() / nanosec * 1e-3;
|
|
}
|
|
|
|
int main() {
|
|
using triton::dnn::op_t;
|
|
using triton::dnn::layout_t;
|
|
|
|
struct config_t{
|
|
int32_t B;
|
|
int32_t C;
|
|
int32_t H;
|
|
int32_t W;
|
|
int32_t R;
|
|
int32_t S;
|
|
int32_t F;
|
|
int32_t stride_h;
|
|
int32_t stride_w;
|
|
op_t op;
|
|
layout_t layout;
|
|
std::string ty;
|
|
|
|
std::string repr() {
|
|
std::ostringstream oss;
|
|
oss << B << ", " << C << ", " << H << ", " << W << ", " << R << ", " << S << ", " << F << ", " << op << ", " << layout << ", " << ty;
|
|
return oss.str();
|
|
}
|
|
|
|
double perf(triton::driver::context *context){
|
|
return do_bench(context, R, S, B, F, H, W, C, op, layout, ty);
|
|
}
|
|
};
|
|
// shapes to benchmark
|
|
std::vector<config_t> configs;
|
|
std::vector<config_t> resnet18 = {
|
|
{128, 128, 32, 32, 3, 3, 128, 1, 1},
|
|
{128, 128, 32, 32, 3, 3, 256, 2, 2},
|
|
{128, 256, 16, 16, 3, 3, 256, 1, 1},
|
|
{128, 256, 16, 16, 3, 3, 512, 2, 2},
|
|
{128, 512, 8, 8, 3, 3, 512, 1, 1},
|
|
{128, 512, 8, 8, 3, 3, 1024, 1, 1},
|
|
{128, 1024, 8, 8, 3, 3, 1024, 1, 1}
|
|
};
|
|
for(config_t c: resnet18){
|
|
for(op_t op: {op_t::FPROP, op_t::BPROP, op_t::WGRAD})
|
|
configs.push_back({c.B, c.C, c.H, c.W, c.R, c.S, c.F, c.stride_h, c.stride_w, op, layout_t::CHWN, "fp16"});
|
|
}
|
|
|
|
// initialize default compute device
|
|
auto context = triton::driver::backend::contexts::get_default();
|
|
for(config_t c: configs)
|
|
std::cout << c.repr() << ", " << c.perf(context) << std::endl;
|
|
|
|
}
|