2019-06-21 17:29:44 -04:00
|
|
|
import numpy as np
|
2022-03-31 12:50:38 -07:00
|
|
|
import pytest
|
2019-06-21 17:29:44 -04:00
|
|
|
|
2022-04-24 17:14:33 +01:00
|
|
|
from gym.envs.registration import EnvSpec
|
2022-03-31 12:50:38 -07:00
|
|
|
from gym.spaces import Box, Discrete, MultiDiscrete, Tuple
|
2019-06-21 17:29:44 -04:00
|
|
|
from gym.vector.sync_vector_env import SyncVectorEnv
|
2022-04-24 17:14:33 +01:00
|
|
|
from tests.envs.spec_list import spec_list
|
|
|
|
from tests.vector.utils import (
|
|
|
|
CustomSpace,
|
|
|
|
assert_rng_equal,
|
|
|
|
make_custom_space_env,
|
|
|
|
make_env,
|
|
|
|
)
|
2019-06-21 17:29:44 -04:00
|
|
|
|
2021-07-29 02:26:34 +02:00
|
|
|
|
2019-06-21 17:29:44 -04:00
|
|
|
def test_create_sync_vector_env():
|
2022-01-10 23:42:26 -05:00
|
|
|
env_fns = [make_env("FrozenLake-v1", i) for i in range(8)]
|
2019-06-21 17:29:44 -04:00
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert env.num_envs == 8
|
|
|
|
|
|
|
|
|
|
|
|
def test_reset_sync_vector_env():
|
2022-01-10 23:42:26 -05:00
|
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
2019-06-21 17:29:44 -04:00
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
observations = env.reset()
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
|
|
assert isinstance(observations, np.ndarray)
|
|
|
|
assert observations.dtype == env.observation_space.dtype
|
|
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
|
2022-02-06 17:28:27 -06:00
|
|
|
del observations
|
|
|
|
|
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
observations = env.reset(return_info=False)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
|
|
assert isinstance(observations, np.ndarray)
|
|
|
|
assert observations.dtype == env.observation_space.dtype
|
|
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
|
|
|
|
del observations
|
|
|
|
|
|
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
observations, infos = env.reset(return_info=True)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
|
|
assert isinstance(observations, np.ndarray)
|
|
|
|
assert observations.dtype == env.observation_space.dtype
|
|
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
|
|
assert observations.shape == env.observation_space.shape
|
2022-05-24 16:36:35 +02:00
|
|
|
assert isinstance(infos, dict)
|
2022-02-06 17:28:27 -06:00
|
|
|
assert all([isinstance(info, dict) for info in infos])
|
|
|
|
|
2019-06-21 17:29:44 -04:00
|
|
|
|
2021-07-29 02:26:34 +02:00
|
|
|
@pytest.mark.parametrize("use_single_action_space", [True, False])
|
2019-06-28 17:46:45 -04:00
|
|
|
def test_step_sync_vector_env(use_single_action_space):
|
2022-01-10 23:42:26 -05:00
|
|
|
env_fns = [make_env("FrozenLake-v1", i) for i in range(8)]
|
2019-06-21 17:29:44 -04:00
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
observations = env.reset()
|
2021-12-08 21:31:41 -05:00
|
|
|
|
|
|
|
assert isinstance(env.single_action_space, Discrete)
|
|
|
|
assert isinstance(env.action_space, MultiDiscrete)
|
|
|
|
|
2019-06-28 17:46:45 -04:00
|
|
|
if use_single_action_space:
|
|
|
|
actions = [env.single_action_space.sample() for _ in range(8)]
|
|
|
|
else:
|
|
|
|
actions = env.action_space.sample()
|
2019-06-21 17:29:44 -04:00
|
|
|
observations, rewards, dones, _ = env.step(actions)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
2022-01-10 23:42:26 -05:00
|
|
|
assert isinstance(env.observation_space, MultiDiscrete)
|
2019-06-21 17:29:44 -04:00
|
|
|
assert isinstance(observations, np.ndarray)
|
|
|
|
assert observations.dtype == env.observation_space.dtype
|
|
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
|
|
|
|
assert isinstance(rewards, np.ndarray)
|
|
|
|
assert isinstance(rewards[0], (float, np.floating))
|
|
|
|
assert rewards.ndim == 1
|
|
|
|
assert rewards.size == 8
|
|
|
|
|
|
|
|
assert isinstance(dones, np.ndarray)
|
|
|
|
assert dones.dtype == np.bool_
|
|
|
|
assert dones.ndim == 1
|
|
|
|
assert dones.size == 8
|
|
|
|
|
|
|
|
|
2022-01-29 12:32:35 -05:00
|
|
|
def test_call_sync_vector_env():
|
2022-06-08 00:20:56 +02:00
|
|
|
env_fns = [make_env("CartPole-v1", i, render_mode="rgb_array") for i in range(4)]
|
2022-01-29 12:32:35 -05:00
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
_ = env.reset()
|
2022-06-08 00:20:56 +02:00
|
|
|
images = env.call("render")
|
2022-01-29 12:32:35 -05:00
|
|
|
gravity = env.call("gravity")
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(images, tuple)
|
|
|
|
assert len(images) == 4
|
|
|
|
for i in range(4):
|
2022-06-08 00:20:56 +02:00
|
|
|
assert len(images[i]) == 1
|
|
|
|
assert isinstance(images[i][0], np.ndarray)
|
2022-01-29 12:32:35 -05:00
|
|
|
|
|
|
|
assert isinstance(gravity, tuple)
|
|
|
|
assert len(gravity) == 4
|
|
|
|
for i in range(4):
|
|
|
|
assert isinstance(gravity[i], float)
|
|
|
|
assert gravity[i] == 9.8
|
|
|
|
|
|
|
|
|
|
|
|
def test_set_attr_sync_vector_env():
|
|
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62])
|
|
|
|
gravity = env.get_attr("gravity")
|
|
|
|
assert gravity == (9.81, 3.72, 8.87, 1.62)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
|
2021-12-08 21:31:41 -05:00
|
|
|
def test_check_spaces_sync_vector_env():
|
2022-01-10 23:42:26 -05:00
|
|
|
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
|
|
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
|
|
|
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
|
|
|
|
env_fns[1] = make_env("FrozenLake-v1", 1)
|
2019-06-21 17:29:44 -04:00
|
|
|
with pytest.raises(RuntimeError):
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
env.close()
|
2020-09-21 22:38:51 +02:00
|
|
|
|
|
|
|
|
|
|
|
def test_custom_space_sync_vector_env():
|
|
|
|
env_fns = [make_custom_space_env(i) for i in range(4)]
|
|
|
|
try:
|
|
|
|
env = SyncVectorEnv(env_fns)
|
|
|
|
reset_observations = env.reset()
|
2021-12-08 21:31:41 -05:00
|
|
|
|
|
|
|
assert isinstance(env.single_action_space, CustomSpace)
|
|
|
|
assert isinstance(env.action_space, Tuple)
|
|
|
|
|
2021-07-29 02:26:34 +02:00
|
|
|
actions = ("action-2", "action-3", "action-5", "action-7")
|
2020-09-21 22:38:51 +02:00
|
|
|
step_observations, rewards, dones, _ = env.step(actions)
|
|
|
|
finally:
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
assert isinstance(env.single_observation_space, CustomSpace)
|
|
|
|
assert isinstance(env.observation_space, Tuple)
|
|
|
|
|
|
|
|
assert isinstance(reset_observations, tuple)
|
2021-07-29 02:26:34 +02:00
|
|
|
assert reset_observations == ("reset", "reset", "reset", "reset")
|
2020-09-21 22:38:51 +02:00
|
|
|
|
|
|
|
assert isinstance(step_observations, tuple)
|
2021-07-29 02:26:34 +02:00
|
|
|
assert step_observations == (
|
|
|
|
"step(action-2)",
|
|
|
|
"step(action-3)",
|
|
|
|
"step(action-5)",
|
|
|
|
"step(action-7)",
|
|
|
|
)
|
2022-04-24 17:14:33 +01:00
|
|
|
|
|
|
|
|
|
|
|
def test_sync_vector_env_seed():
|
|
|
|
env = make_env("BipedalWalker-v3", seed=123)()
|
|
|
|
sync_vector_env = SyncVectorEnv([make_env("BipedalWalker-v3", seed=123)])
|
|
|
|
|
|
|
|
assert_rng_equal(env.action_space.np_random, sync_vector_env.action_space.np_random)
|
|
|
|
for _ in range(100):
|
|
|
|
env_action = env.action_space.sample()
|
|
|
|
vector_action = sync_vector_env.action_space.sample()
|
|
|
|
assert np.all(env_action == vector_action)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("spec", spec_list, ids=[spec.id for spec in spec_list])
|
|
|
|
def test_sync_vector_determinism(spec: EnvSpec, seed: int = 123, n: int = 3):
|
|
|
|
"""Check that for all environments, the sync vector envs produce the same action samples using the same seeds"""
|
|
|
|
env_1 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)])
|
|
|
|
env_2 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)])
|
|
|
|
assert_rng_equal(env_1.action_space.np_random, env_2.action_space.np_random)
|
|
|
|
|
|
|
|
for _ in range(100):
|
|
|
|
env_1_samples = env_1.action_space.sample()
|
|
|
|
env_2_samples = env_2.action_space.sample()
|
|
|
|
assert np.all(env_1_samples == env_2_samples)
|