Files
Gymnasium/gym/spaces/utils.py

344 lines
10 KiB
Python
Raw Normal View History

"""Implementation of utility functions that can be applied to spaces.
These functions mostly take care of flattening and unflattening elements of spaces
to facilitate their usage in learning code.
"""
import operator as op
from collections import OrderedDict
from functools import reduce, singledispatch
2022-04-11 13:27:23 -04:00
from typing import TypeVar, Union, cast
import numpy as np
2022-06-09 15:42:58 +01:00
from gym.spaces import (
Box,
Dict,
Discrete,
Graph,
GraphInstance,
MultiBinary,
MultiDiscrete,
Space,
Tuple,
)
@singledispatch
def flatdim(space: Space) -> int:
"""Return the number of dimensions a flattened equivalent of this space would have.
Example usage::
Pydocstyle utils vector docstring (#2788) * Added pydocstyle to pre-commit * Added docstrings for tests and updated the tests for autoreset * Add pydocstyle exclude folder to allow slowly adding new docstrings * Add docstrings for setup.py and gym/__init__.py, core.py, error.py and logger.py * Check that all unwrapped environment are of a particular wrapper type * Reverted back to import gym.spaces.Space to gym.spaces * Fixed the __init__.py docstring * Fixed autoreset autoreset test * Updated gym __init__.py top docstring * Fix examples in docstrings * Add docstrings and type hints where known to all functions and classes in gym/utils and gym/vector * Remove unnecessary import * Removed "unused error" and make APIerror deprecated at gym 1.0 * Add pydocstyle description to CONTRIBUTING.md * Added docstrings section to CONTRIBUTING.md * Added :meth: and :attr: keywords to docstrings * Added :meth: and :attr: keywords to docstrings * Imported annotations from __future__ to fix python 3.7 * Add __future__ import annotations for python 3.7 * isort * Remove utils and vectors for this PR and spaces for previous PR * Update gym/envs/classic_control/acrobot.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/envs/classic_control/acrobot.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/envs/classic_control/acrobot.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/spaces/dict.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/ezpickle.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/ezpickle.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/play.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Pre-commit * Updated docstrings with :meth: * Updated docstrings with :meth: * Update gym/utils/play.py * Update gym/utils/play.py * Update gym/utils/play.py * Apply suggestions from code review Co-authored-by: Markus Krimmel <montcyril@gmail.com> * pre-commit * Update gym/utils/play.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Updated fps and zoom parameter docstring * Update play docstring * Apply suggestions from code review Added suggested corrections from @markus28 Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Pre-commit magic * Update the `gym.make` docstring with a warning for `env_checker` * Updated and fixed vector docstrings * Update test names for reflect the project filename style Co-authored-by: Markus Krimmel <montcyril@gmail.com>
2022-05-20 14:49:30 +01:00
>>> from gym.spaces import Discrete
>>> space = Dict({"position": Discrete(2), "velocity": Discrete(3)})
>>> flatdim(space)
5
Args:
space: The space to return the number of dimensions of the flattened spaces
Returns:
The number of dimensions for the flattened spaces
Raises:
NotImplementedError: if the space is not defined in ``gym.spaces``.
"""
raise NotImplementedError(f"Unknown space: `{space}`")
@flatdim.register(Box)
@flatdim.register(MultiBinary)
def _flatdim_box_multibinary(space: Union[Box, MultiBinary]) -> int:
return reduce(op.mul, space.shape, 1)
@flatdim.register(Discrete)
def _flatdim_discrete(space: Discrete) -> int:
return int(space.n)
@flatdim.register(MultiDiscrete)
def _flatdim_multidiscrete(space: MultiDiscrete) -> int:
return int(np.sum(space.nvec))
@flatdim.register(Tuple)
def _flatdim_tuple(space: Tuple) -> int:
return sum(flatdim(s) for s in space.spaces)
@flatdim.register(Dict)
def _flatdim_dict(space: Dict) -> int:
return sum(flatdim(s) for s in space.spaces.values())
T = TypeVar("T")
@singledispatch
def flatten(space: Space[T], x: T) -> np.ndarray:
"""Flatten a data point from a space.
This is useful when e.g. points from spaces must be passed to a neural
network, which only understands flat arrays of floats.
Args:
space: The space that ``x`` is flattened by
x: The value to flatten
Returns:
2022-06-09 15:42:58 +01:00
- The flattened ``x``, always returns a 1D array for non-graph spaces.
- For graph spaces, returns `GraphInstance` where:
- `nodes` are n x k arrays
- `edges` are either:
- m x k arrays
- None
- `edge_links` are either:
- m x 2 arrays
- None
Raises:
NotImplementedError: If the space is not defined in ``gym.spaces``.
"""
raise NotImplementedError(f"Unknown space: `{space}`")
@flatten.register(Box)
@flatten.register(MultiBinary)
def _flatten_box_multibinary(space, x) -> np.ndarray:
return np.asarray(x, dtype=space.dtype).flatten()
@flatten.register(Discrete)
def _flatten_discrete(space, x) -> np.ndarray:
onehot = np.zeros(space.n, dtype=space.dtype)
onehot[x - space.start] = 1
return onehot
@flatten.register(MultiDiscrete)
def _flatten_multidiscrete(space, x) -> np.ndarray:
offsets = np.zeros((space.nvec.size + 1,), dtype=space.dtype)
offsets[1:] = np.cumsum(space.nvec.flatten())
onehot = np.zeros((offsets[-1],), dtype=space.dtype)
onehot[offsets[:-1] + x.flatten()] = 1
return onehot
@flatten.register(Tuple)
def _flatten_tuple(space, x) -> np.ndarray:
return np.concatenate([flatten(s, x_part) for x_part, s in zip(x, space.spaces)])
@flatten.register(Dict)
def _flatten_dict(space, x) -> np.ndarray:
return np.concatenate([flatten(s, x[key]) for key, s in space.spaces.items()])
2022-06-09 15:42:58 +01:00
@flatten.register(Graph)
def _flatten_graph(space, x) -> np.ndarray:
"""We're not using `.unflatten() for :class:`Box` and :class:`Discrete` because a graph is not a homogeneous space, see `.flatten` docstring."""
def _graph_unflatten(space, x):
ret = None
if space is not None and x is not None:
if isinstance(space, Box):
ret = x.reshape(x.shape[0], -1)
elif isinstance(space, Discrete):
ret = np.zeros((x.shape[0], space.n - space.start), dtype=space.dtype)
ret[np.arange(x.shape[0]), x - space.start] = 1
return ret
nodes = _graph_unflatten(space.node_space, x.nodes)
edges = _graph_unflatten(space.edge_space, x.edges)
return GraphInstance(nodes, edges, x.edge_links)
@singledispatch
def unflatten(space: Space[T], x: np.ndarray) -> T:
"""Unflatten a data point from a space.
This reverses the transformation applied by :func:`flatten`. You must ensure
that the ``space`` argument is the same as for the :func:`flatten` call.
Args:
space: The space used to unflatten ``x``
x: The array to unflatten
Returns:
A point with a structure that matches the space.
Raises:
NotImplementedError: if the space is not defined in ``gym.spaces``.
"""
raise NotImplementedError(f"Unknown space: `{space}`")
@unflatten.register(Box)
@unflatten.register(MultiBinary)
def _unflatten_box_multibinary(
space: Union[Box, MultiBinary], x: np.ndarray
) -> np.ndarray:
return np.asarray(x, dtype=space.dtype).reshape(space.shape)
@unflatten.register(Discrete)
def _unflatten_discrete(space: Discrete, x: np.ndarray) -> int:
return int(space.start + np.nonzero(x)[0][0])
@unflatten.register(MultiDiscrete)
def _unflatten_multidiscrete(space: MultiDiscrete, x: np.ndarray) -> np.ndarray:
offsets = np.zeros((space.nvec.size + 1,), dtype=space.dtype)
offsets[1:] = np.cumsum(space.nvec.flatten())
2022-04-11 13:27:23 -04:00
(indices,) = cast(type(offsets[:-1]), np.nonzero(x))
return np.asarray(indices - offsets[:-1], dtype=space.dtype).reshape(space.shape)
@unflatten.register(Tuple)
def _unflatten_tuple(space: Tuple, x: np.ndarray) -> tuple:
dims = np.asarray([flatdim(s) for s in space.spaces], dtype=np.int_)
list_flattened = np.split(x, np.cumsum(dims[:-1]))
return tuple(
unflatten(s, flattened) for flattened, s in zip(list_flattened, space.spaces)
)
@unflatten.register(Dict)
def _unflatten_dict(space: Dict, x: np.ndarray) -> dict:
dims = np.asarray([flatdim(s) for s in space.spaces.values()], dtype=np.int_)
list_flattened = np.split(x, np.cumsum(dims[:-1]))
return OrderedDict(
[
2021-07-29 15:39:42 -04:00
(key, unflatten(s, flattened))
for flattened, (key, s) in zip(list_flattened, space.spaces.items())
]
)
2022-06-09 15:42:58 +01:00
@unflatten.register(Graph)
def _unflatten_graph(space: Graph, x: GraphInstance) -> GraphInstance:
"""We're not using `.unflatten() for :class:`Box` and :class:`Discrete` because a graph is not a homogeneous space.
The size of the outcome is actually not fixed, but determined based on the number of
nodes and edges in the graph.
"""
def _graph_unflatten(space, x):
ret = None
if space is not None and x is not None:
if isinstance(space, Box):
ret = x.reshape(-1, *space.shape)
elif isinstance(space, Discrete):
ret = np.asarray(np.nonzero(x))[-1, :]
return ret
nodes = _graph_unflatten(space.node_space, x.nodes)
edges = _graph_unflatten(space.edge_space, x.edges)
return GraphInstance(nodes, edges, x.edge_links)
@singledispatch
def flatten_space(space: Space) -> Box:
"""Flatten a space into a single ``Box``.
This is equivalent to :func:`flatten`, but operates on the space itself. The
2022-06-09 15:42:58 +01:00
result for non-graph spaces is always a `Box` with flat boundaries. While
the result for graph spaces is always a `Graph` with `node_space` being a `Box`
with flat boundaries and `edge_space` being a `Box` with flat boundaries or
`None`. The box has exactly :func:`flatdim` dimensions. Flattening a sample
of the original space has the same effect as taking a sample of the flattenend
space.
Example::
>>> box = Box(0.0, 1.0, shape=(3, 4, 5))
>>> box
Box(3, 4, 5)
>>> flatten_space(box)
Box(60,)
>>> flatten(box, box.sample()) in flatten_space(box)
True
Example that flattens a discrete space::
>>> discrete = Discrete(5)
>>> flatten_space(discrete)
Box(5,)
>>> flatten(box, box.sample()) in flatten_space(box)
True
Example that recursively flattens a dict::
Pydocstyle utils vector docstring (#2788) * Added pydocstyle to pre-commit * Added docstrings for tests and updated the tests for autoreset * Add pydocstyle exclude folder to allow slowly adding new docstrings * Add docstrings for setup.py and gym/__init__.py, core.py, error.py and logger.py * Check that all unwrapped environment are of a particular wrapper type * Reverted back to import gym.spaces.Space to gym.spaces * Fixed the __init__.py docstring * Fixed autoreset autoreset test * Updated gym __init__.py top docstring * Fix examples in docstrings * Add docstrings and type hints where known to all functions and classes in gym/utils and gym/vector * Remove unnecessary import * Removed "unused error" and make APIerror deprecated at gym 1.0 * Add pydocstyle description to CONTRIBUTING.md * Added docstrings section to CONTRIBUTING.md * Added :meth: and :attr: keywords to docstrings * Added :meth: and :attr: keywords to docstrings * Imported annotations from __future__ to fix python 3.7 * Add __future__ import annotations for python 3.7 * isort * Remove utils and vectors for this PR and spaces for previous PR * Update gym/envs/classic_control/acrobot.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/envs/classic_control/acrobot.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/envs/classic_control/acrobot.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/spaces/dict.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/env_checker.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/ezpickle.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/ezpickle.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Update gym/utils/play.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Pre-commit * Updated docstrings with :meth: * Updated docstrings with :meth: * Update gym/utils/play.py * Update gym/utils/play.py * Update gym/utils/play.py * Apply suggestions from code review Co-authored-by: Markus Krimmel <montcyril@gmail.com> * pre-commit * Update gym/utils/play.py Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Updated fps and zoom parameter docstring * Update play docstring * Apply suggestions from code review Added suggested corrections from @markus28 Co-authored-by: Markus Krimmel <montcyril@gmail.com> * Pre-commit magic * Update the `gym.make` docstring with a warning for `env_checker` * Updated and fixed vector docstrings * Update test names for reflect the project filename style Co-authored-by: Markus Krimmel <montcyril@gmail.com>
2022-05-20 14:49:30 +01:00
>>> space = Dict({"position": Discrete(2), "velocity": Box(0, 1, shape=(2, 2))})
>>> flatten_space(space)
Box(6,)
>>> flatten(space, space.sample()) in flatten_space(space)
True
2022-06-09 15:42:58 +01:00
Example that flattens a graph::
>>> space = Graph(node_space=Box(low=-100, high=100, shape=(3, 4)), edge_space=Discrete(5))
>>> flatten_space(space)
Graph(Box(-100.0, 100.0, (12,), float32), Box(0, 1, (5,), int64))
>>> flatten(space, space.sample()) in flatten_space(space)
True
Args:
space: The space to flatten
Returns:
A flattened Box
Raises:
NotImplementedError: if the space is not defined in ``gym.spaces``.
"""
raise NotImplementedError(f"Unknown space: `{space}`")
@flatten_space.register(Box)
def _flatten_space_box(space: Box) -> Box:
return Box(space.low.flatten(), space.high.flatten(), dtype=space.dtype)
@flatten_space.register(Discrete)
@flatten_space.register(MultiBinary)
@flatten_space.register(MultiDiscrete)
def _flatten_space_binary(space: Union[Discrete, MultiBinary, MultiDiscrete]) -> Box:
return Box(low=0, high=1, shape=(flatdim(space),), dtype=space.dtype)
@flatten_space.register(Tuple)
def _flatten_space_tuple(space: Tuple) -> Box:
space_list = [flatten_space(s) for s in space.spaces]
return Box(
low=np.concatenate([s.low for s in space_list]),
high=np.concatenate([s.high for s in space_list]),
dtype=np.result_type(*[s.dtype for s in space_list]),
)
@flatten_space.register(Dict)
def _flatten_space_dict(space: Dict) -> Box:
space_list = [flatten_space(s) for s in space.spaces.values()]
return Box(
low=np.concatenate([s.low for s in space_list]),
high=np.concatenate([s.high for s in space_list]),
dtype=np.result_type(*[s.dtype for s in space_list]),
)
2022-06-09 15:42:58 +01:00
@flatten_space.register(Graph)
def _flatten_space_graph(space: Graph) -> Graph:
return Graph(
node_space=flatten_space(space.node_space),
edge_space=flatten_space(space.edge_space)
if space.edge_space is not None
else None,
)