add RNN layers.

This commit is contained in:
gyunt
2019-03-27 07:54:15 +09:00
parent 45be273776
commit 2a4ba2b0a5

View File

@@ -1,7 +1,7 @@
import numpy as np
import tensorflow as tf
from baselines.a2c.utils import ortho_init
from baselines.a2c.utils import ortho_init, fc
from baselines.common.models import register
@@ -88,6 +88,93 @@ def ppo_cnn_lnlstm(nlstm=128, **conv_kwargs):
return ppo_cnn_lstm(nlstm, layer_norm=True, **conv_kwargs)
@register("ppo_gru")
def ppo_gru(nlstm=128):
def network_fn(input, mask):
memory_size = nlstm
nbatch = input.shape[0]
mask.get_shape().assert_is_compatible_with([nbatch])
state = tf.Variable(np.zeros([nbatch, memory_size]),
name='gru_state',
trainable=False,
dtype=tf.float32,
collections=[tf.GraphKeys.LOCAL_VARIABLES])
def _network_fn(input, mask, state):
input = tf.layers.flatten(input)
mask = tf.to_float(mask)
h, next_state = gru(input, mask, state, nh=nlstm)
return h, next_state
return state, _network_fn
return network_fn
@register("ppo_lstm_mlp")
def ppo_lstm(nlstm=128, layer_norm=False):
def network_fn(input, mask):
memory_size = nlstm * 2
nbatch = input.shape[0]
mask.get_shape().assert_is_compatible_with([nbatch])
state = tf.Variable(np.zeros([nbatch, memory_size]),
name='lstm_state',
trainable=False,
dtype=tf.float32,
collections=[tf.GraphKeys.LOCAL_VARIABLES])
def _network_fn(input, mask, state):
input = tf.layers.flatten(input)
mask = tf.to_float(mask)
h, next_state = lstm(input, mask, state, scope='lstm', nh=nlstm)
num_layers = 2
num_hidden = 64
activation = tf.nn.relu
for i in range(num_layers):
h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2))
h = activation(h)
return h, next_state
return state, _network_fn
return network_fn
@register("ppo_gru_mlp")
def ppo_gru_mlp(nlstm=128):
def network_fn(input, mask):
memory_size = nlstm
nbatch = input.shape[0]
mask.get_shape().assert_is_compatible_with([nbatch])
state = tf.Variable(np.zeros([nbatch, memory_size]),
name='gru_state',
trainable=False,
dtype=tf.float32,
collections=[tf.GraphKeys.LOCAL_VARIABLES])
def _network_fn(input, mask, state):
input = tf.layers.flatten(input)
mask = tf.to_float(mask)
h, next_state = gru(input, mask, state, nh=nlstm)
num_layers = 2
num_hidden = 64
activation = tf.nn.relu
for i in range(num_layers):
h = fc(h, 'mlp_fc{}'.format(i), nh=num_hidden, init_scale=np.sqrt(2))
h = activation(h)
return h, next_state
return state, _network_fn
return network_fn
def lstm(x, m, s, scope, nh, init_scale=1.0):
x = tf.layers.flatten(x)
nin = x.get_shape()[1]
@@ -155,3 +242,19 @@ def lnlstm(x, m, s, scope, nh, init_scale=1.0):
s = tf.concat(axis=1, values=[c, h])
return h, s
def gru(x, mask, state, nh, init_scale=-1.0):
"""Gated recurrent unit (GRU) with nunits cells."""
h = state
mask = tf.tile(tf.expand_dims(mask, axis=-1), multiples=[1, nh])
h *= (1.0 - mask)
hx = tf.concat([h, x], axis=1)
mr = tf.sigmoid(fc(hx, nh=nh * 2, scope='gru_mr', init_bias=init_scale))
# r: read strength. m: 'member strength
m, r = tf.split(mr, 2, axis=1)
rh_x = tf.concat([r * h, x], axis=1)
htil = tf.tanh(fc(rh_x, nh=nh, scope='gru_htil'))
h = m * h + (1.0 - m) * htil
return h, h