microbatches in ppo2, custom frame size in WarpFrame, matching fc layer only when needed (#707)
* joshim5 changes (width and height to WarpFrame wrapper) * match network output with action distribution via a linear layer only if necessary (#167) * support color vs. grayscale option in WarpFrame wrapper (#166) * support color vs. grayscale option in WarpFrame wrapper * Support color in other wrappers * Updated per Peters suggestions * fixing test failures * ppo2 with microbatches (#168) * pass microbatch_size to the model during construction * microbatch fixes and test (#169) * microbatch fixes and test * tiny cleanup * added assertions to the test * vpg-related fix * Peterz joshim5 subclass ppo2 model (#170) * microbatch fixes and test * tiny cleanup * added assertions to the test * vpg-related fix * subclassing the model to make microbatched version of model WIP * made microbatched model a subclass of ppo2 Model * flake8 complaint * mpi-less ppo2 (resolving merge conflict) * flake8 and mpi4py imports in ppo2/model.py * more un-mpying
This commit is contained in:
@@ -103,9 +103,9 @@ def test_coexistence(learn_fn, network_fn):
|
||||
kwargs.update(learn_kwargs[learn_fn])
|
||||
|
||||
learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
|
||||
make_session(make_default=True, graph=tf.Graph());
|
||||
make_session(make_default=True, graph=tf.Graph())
|
||||
model1 = learn(seed=1)
|
||||
make_session(make_default=True, graph=tf.Graph());
|
||||
make_session(make_default=True, graph=tf.Graph())
|
||||
model2 = learn(seed=2)
|
||||
|
||||
model1.step(env.observation_space.sample())
|
||||
|
76
baselines/ppo2/microbatched_model.py
Normal file
76
baselines/ppo2/microbatched_model.py
Normal file
@@ -0,0 +1,76 @@
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from baselines.ppo2.model import Model
|
||||
|
||||
class MicrobatchedModel(Model):
|
||||
"""
|
||||
Model that does training one microbatch at a time - when gradient computation
|
||||
on the entire minibatch causes some overflow
|
||||
"""
|
||||
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size):
|
||||
|
||||
self.nmicrobatches = nbatch_train // microbatch_size
|
||||
self.microbatch_size = microbatch_size
|
||||
assert nbatch_train % microbatch_size == 0, 'microbatch_size ({}) should divide nbatch_train ({}) evenly'.format(microbatch_size, nbatch_train)
|
||||
|
||||
super().__init__(
|
||||
policy=policy,
|
||||
ob_space=ob_space,
|
||||
ac_space=ac_space,
|
||||
nbatch_act=nbatch_act,
|
||||
nbatch_train=microbatch_size,
|
||||
nsteps=nsteps,
|
||||
ent_coef=ent_coef,
|
||||
vf_coef=vf_coef,
|
||||
max_grad_norm=max_grad_norm)
|
||||
|
||||
self.grads_ph = [tf.placeholder(dtype=g.dtype, shape=g.shape) for g in self.grads]
|
||||
grads_ph_and_vars = list(zip(self.grads_ph, self.var))
|
||||
self._apply_gradients_op = self.trainer.apply_gradients(grads_ph_and_vars)
|
||||
|
||||
|
||||
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
|
||||
assert states is None, "microbatches with recurrent models are not supported yet"
|
||||
|
||||
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
|
||||
# Returns = R + yV(s')
|
||||
advs = returns - values
|
||||
|
||||
# Normalize the advantages
|
||||
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
|
||||
|
||||
# Initialize empty list for per-microbatch stats like pg_loss, vf_loss, entropy, approxkl (whatever is in self.stats_list)
|
||||
stats_vs = []
|
||||
|
||||
for microbatch_idx in range(self.nmicrobatches):
|
||||
_sli = range(microbatch_idx * self.microbatch_size, (microbatch_idx+1) * self.microbatch_size)
|
||||
td_map = {
|
||||
self.train_model.X: obs[_sli],
|
||||
self.A:actions[_sli],
|
||||
self.ADV:advs[_sli],
|
||||
self.R:returns[_sli],
|
||||
self.CLIPRANGE:cliprange,
|
||||
self.OLDNEGLOGPAC:neglogpacs[_sli],
|
||||
self.OLDVPRED:values[_sli]
|
||||
}
|
||||
|
||||
# Compute gradient on a microbatch (note that variables do not change here) ...
|
||||
grad_v, stats_v = self.sess.run([self.grads, self.stats_list], td_map)
|
||||
if microbatch_idx == 0:
|
||||
sum_grad_v = grad_v
|
||||
else:
|
||||
# .. and add to the total of the gradients
|
||||
for i, g in enumerate(grad_v):
|
||||
sum_grad_v[i] += g
|
||||
stats_vs.append(stats_v)
|
||||
|
||||
feed_dict = {ph: sum_g / self.nmicrobatches for ph, sum_g in zip(self.grads_ph, sum_grad_v)}
|
||||
feed_dict[self.LR] = lr
|
||||
# Update variables using average of the gradients
|
||||
self.sess.run(self._apply_gradients_op, feed_dict)
|
||||
# Return average of the stats
|
||||
return np.mean(np.array(stats_vs), axis=0).tolist()
|
||||
|
||||
|
||||
|
157
baselines/ppo2/model.py
Normal file
157
baselines/ppo2/model.py
Normal file
@@ -0,0 +1,157 @@
|
||||
import tensorflow as tf
|
||||
import functools
|
||||
|
||||
from baselines.common.tf_util import get_session, save_variables, load_variables
|
||||
from baselines.common.tf_util import initialize
|
||||
|
||||
try:
|
||||
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
|
||||
from mpi4py import MPI
|
||||
from baselines.common.mpi_util import sync_from_root
|
||||
except ImportError:
|
||||
MPI = None
|
||||
|
||||
class Model(object):
|
||||
"""
|
||||
We use this object to :
|
||||
__init__:
|
||||
- Creates the step_model
|
||||
- Creates the train_model
|
||||
|
||||
train():
|
||||
- Make the training part (feedforward and retropropagation of gradients)
|
||||
|
||||
save/load():
|
||||
- Save load the model
|
||||
"""
|
||||
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size=None):
|
||||
self.sess = sess = get_session()
|
||||
|
||||
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
|
||||
# CREATE OUR TWO MODELS
|
||||
# act_model that is used for sampling
|
||||
act_model = policy(nbatch_act, 1, sess)
|
||||
|
||||
# Train model for training
|
||||
if microbatch_size is None:
|
||||
train_model = policy(nbatch_train, nsteps, sess)
|
||||
else:
|
||||
train_model = policy(microbatch_size, nsteps, sess)
|
||||
|
||||
# CREATE THE PLACEHOLDERS
|
||||
self.A = A = train_model.pdtype.sample_placeholder([None])
|
||||
self.ADV = ADV = tf.placeholder(tf.float32, [None])
|
||||
self.R = R = tf.placeholder(tf.float32, [None])
|
||||
# Keep track of old actor
|
||||
self.OLDNEGLOGPAC = OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
|
||||
# Keep track of old critic
|
||||
self.OLDVPRED = OLDVPRED = tf.placeholder(tf.float32, [None])
|
||||
self.LR = LR = tf.placeholder(tf.float32, [])
|
||||
# Cliprange
|
||||
self.CLIPRANGE = CLIPRANGE = tf.placeholder(tf.float32, [])
|
||||
|
||||
neglogpac = train_model.pd.neglogp(A)
|
||||
|
||||
# Calculate the entropy
|
||||
# Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
|
||||
entropy = tf.reduce_mean(train_model.pd.entropy())
|
||||
|
||||
# CALCULATE THE LOSS
|
||||
# Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss
|
||||
|
||||
# Clip the value to reduce variability during Critic training
|
||||
# Get the predicted value
|
||||
vpred = train_model.vf
|
||||
vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE)
|
||||
# Unclipped value
|
||||
vf_losses1 = tf.square(vpred - R)
|
||||
# Clipped value
|
||||
vf_losses2 = tf.square(vpredclipped - R)
|
||||
|
||||
vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
|
||||
|
||||
# Calculate ratio (pi current policy / pi old policy)
|
||||
ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
|
||||
|
||||
# Defining Loss = - J is equivalent to max J
|
||||
pg_losses = -ADV * ratio
|
||||
|
||||
pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
|
||||
|
||||
# Final PG loss
|
||||
pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
|
||||
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
|
||||
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
|
||||
|
||||
# Total loss
|
||||
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
|
||||
|
||||
# UPDATE THE PARAMETERS USING LOSS
|
||||
# 1. Get the model parameters
|
||||
params = tf.trainable_variables('ppo2_model')
|
||||
# 2. Build our trainer
|
||||
if MPI is not None:
|
||||
self.trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
|
||||
else:
|
||||
self.trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
|
||||
# 3. Calculate the gradients
|
||||
grads_and_var = self.trainer.compute_gradients(loss, params)
|
||||
grads, var = zip(*grads_and_var)
|
||||
|
||||
if max_grad_norm is not None:
|
||||
# Clip the gradients (normalize)
|
||||
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
|
||||
grads_and_var = list(zip(grads, var))
|
||||
# zip aggregate each gradient with parameters associated
|
||||
# For instance zip(ABCD, xyza) => Ax, By, Cz, Da
|
||||
|
||||
self.grads = grads
|
||||
self.var = var
|
||||
self._train_op = self.trainer.apply_gradients(grads_and_var)
|
||||
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac']
|
||||
self.stats_list = [pg_loss, vf_loss, entropy, approxkl, clipfrac]
|
||||
|
||||
|
||||
self.train_model = train_model
|
||||
self.act_model = act_model
|
||||
self.step = act_model.step
|
||||
self.value = act_model.value
|
||||
self.initial_state = act_model.initial_state
|
||||
|
||||
self.save = functools.partial(save_variables, sess=sess)
|
||||
self.load = functools.partial(load_variables, sess=sess)
|
||||
|
||||
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
|
||||
initialize()
|
||||
else:
|
||||
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
|
||||
sync_from_root(sess, global_variables) #pylint: disable=E1101
|
||||
|
||||
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
|
||||
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
|
||||
# Returns = R + yV(s')
|
||||
advs = returns - values
|
||||
|
||||
# Normalize the advantages
|
||||
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
|
||||
|
||||
td_map = {
|
||||
self.train_model.X : obs,
|
||||
self.A : actions,
|
||||
self.ADV : advs,
|
||||
self.R : returns,
|
||||
self.LR : lr,
|
||||
self.CLIPRANGE : cliprange,
|
||||
self.OLDNEGLOGPAC : neglogpacs,
|
||||
self.OLDVPRED : values
|
||||
}
|
||||
if states is not None:
|
||||
td_map[self.train_model.S] = states
|
||||
td_map[self.train_model.M] = masks
|
||||
|
||||
return self.sess.run(
|
||||
self.stats_list + [self._train_op],
|
||||
td_map
|
||||
)[:-1]
|
||||
|
@@ -1,226 +1,17 @@
|
||||
import os
|
||||
import time
|
||||
import functools
|
||||
import numpy as np
|
||||
import os.path as osp
|
||||
import tensorflow as tf
|
||||
from baselines import logger
|
||||
from collections import deque
|
||||
from baselines.common import explained_variance, set_global_seeds
|
||||
from baselines.common.policies import build_policy
|
||||
from baselines.common.runners import AbstractEnvRunner
|
||||
from baselines.common.tf_util import get_session, save_variables, load_variables
|
||||
|
||||
try:
|
||||
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
|
||||
from mpi4py import MPI
|
||||
from baselines.common.mpi_util import sync_from_root
|
||||
except ImportError:
|
||||
MPI = None
|
||||
from baselines.ppo2.runner import Runner
|
||||
|
||||
from baselines.common.tf_util import initialize
|
||||
|
||||
class Model(object):
|
||||
"""
|
||||
We use this object to :
|
||||
__init__:
|
||||
- Creates the step_model
|
||||
- Creates the train_model
|
||||
|
||||
train():
|
||||
- Make the training part (feedforward and retropropagation of gradients)
|
||||
|
||||
save/load():
|
||||
- Save load the model
|
||||
"""
|
||||
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
|
||||
nsteps, ent_coef, vf_coef, max_grad_norm):
|
||||
sess = get_session()
|
||||
|
||||
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
|
||||
# CREATE OUR TWO MODELS
|
||||
# act_model that is used for sampling
|
||||
act_model = policy(nbatch_act, 1, sess)
|
||||
|
||||
# Train model for training
|
||||
train_model = policy(nbatch_train, nsteps, sess)
|
||||
|
||||
# CREATE THE PLACEHOLDERS
|
||||
A = train_model.pdtype.sample_placeholder([None])
|
||||
ADV = tf.placeholder(tf.float32, [None])
|
||||
R = tf.placeholder(tf.float32, [None])
|
||||
# Keep track of old actor
|
||||
OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
|
||||
# Keep track of old critic
|
||||
OLDVPRED = tf.placeholder(tf.float32, [None])
|
||||
LR = tf.placeholder(tf.float32, [])
|
||||
# Cliprange
|
||||
CLIPRANGE = tf.placeholder(tf.float32, [])
|
||||
|
||||
neglogpac = train_model.pd.neglogp(A)
|
||||
|
||||
# Calculate the entropy
|
||||
# Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
|
||||
entropy = tf.reduce_mean(train_model.pd.entropy())
|
||||
|
||||
# CALCULATE THE LOSS
|
||||
# Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss
|
||||
|
||||
# Clip the value to reduce variability during Critic training
|
||||
# Get the predicted value
|
||||
vpred = train_model.vf
|
||||
vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE)
|
||||
# Unclipped value
|
||||
vf_losses1 = tf.square(vpred - R)
|
||||
# Clipped value
|
||||
vf_losses2 = tf.square(vpredclipped - R)
|
||||
|
||||
vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
|
||||
|
||||
# Calculate ratio (pi current policy / pi old policy)
|
||||
ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
|
||||
|
||||
# Defining Loss = - J is equivalent to max J
|
||||
pg_losses = -ADV * ratio
|
||||
|
||||
pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
|
||||
|
||||
# Final PG loss
|
||||
pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
|
||||
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
|
||||
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
|
||||
|
||||
# Total loss
|
||||
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
|
||||
|
||||
# UPDATE THE PARAMETERS USING LOSS
|
||||
# 1. Get the model parameters
|
||||
params = tf.trainable_variables('ppo2_model')
|
||||
# 2. Build our trainer
|
||||
if MPI is not None:
|
||||
trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
|
||||
else:
|
||||
trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
|
||||
# 3. Calculate the gradients
|
||||
grads_and_var = trainer.compute_gradients(loss, params)
|
||||
grads, var = zip(*grads_and_var)
|
||||
|
||||
if max_grad_norm is not None:
|
||||
# Clip the gradients (normalize)
|
||||
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
|
||||
grads_and_var = list(zip(grads, var))
|
||||
# zip aggregate each gradient with parameters associated
|
||||
# For instance zip(ABCD, xyza) => Ax, By, Cz, Da
|
||||
|
||||
_train = trainer.apply_gradients(grads_and_var)
|
||||
|
||||
def train(lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
|
||||
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
|
||||
# Returns = R + yV(s')
|
||||
advs = returns - values
|
||||
|
||||
# Normalize the advantages
|
||||
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
|
||||
td_map = {train_model.X:obs, A:actions, ADV:advs, R:returns, LR:lr,
|
||||
CLIPRANGE:cliprange, OLDNEGLOGPAC:neglogpacs, OLDVPRED:values}
|
||||
if states is not None:
|
||||
td_map[train_model.S] = states
|
||||
td_map[train_model.M] = masks
|
||||
return sess.run(
|
||||
[pg_loss, vf_loss, entropy, approxkl, clipfrac, _train],
|
||||
td_map
|
||||
)[:-1]
|
||||
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac']
|
||||
|
||||
|
||||
self.train = train
|
||||
self.train_model = train_model
|
||||
self.act_model = act_model
|
||||
self.step = act_model.step
|
||||
self.value = act_model.value
|
||||
self.initial_state = act_model.initial_state
|
||||
|
||||
self.save = functools.partial(save_variables, sess=sess)
|
||||
self.load = functools.partial(load_variables, sess=sess)
|
||||
|
||||
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
|
||||
initialize()
|
||||
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
|
||||
|
||||
if MPI is not None:
|
||||
sync_from_root(sess, global_variables) #pylint: disable=E1101
|
||||
|
||||
class Runner(AbstractEnvRunner):
|
||||
"""
|
||||
We use this object to make a mini batch of experiences
|
||||
__init__:
|
||||
- Initialize the runner
|
||||
|
||||
run():
|
||||
- Make a mini batch
|
||||
"""
|
||||
def __init__(self, *, env, model, nsteps, gamma, lam):
|
||||
super().__init__(env=env, model=model, nsteps=nsteps)
|
||||
# Lambda used in GAE (General Advantage Estimation)
|
||||
self.lam = lam
|
||||
# Discount rate
|
||||
self.gamma = gamma
|
||||
|
||||
def run(self):
|
||||
# Here, we init the lists that will contain the mb of experiences
|
||||
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
|
||||
mb_states = self.states
|
||||
epinfos = []
|
||||
# For n in range number of steps
|
||||
for _ in range(self.nsteps):
|
||||
# Given observations, get action value and neglopacs
|
||||
# We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init
|
||||
actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones)
|
||||
mb_obs.append(self.obs.copy())
|
||||
mb_actions.append(actions)
|
||||
mb_values.append(values)
|
||||
mb_neglogpacs.append(neglogpacs)
|
||||
mb_dones.append(self.dones)
|
||||
|
||||
# Take actions in env and look the results
|
||||
# Infos contains a ton of useful informations
|
||||
self.obs[:], rewards, self.dones, infos = self.env.step(actions)
|
||||
for info in infos:
|
||||
maybeepinfo = info.get('episode')
|
||||
if maybeepinfo: epinfos.append(maybeepinfo)
|
||||
mb_rewards.append(rewards)
|
||||
#batch of steps to batch of rollouts
|
||||
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
|
||||
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
|
||||
mb_actions = np.asarray(mb_actions)
|
||||
mb_values = np.asarray(mb_values, dtype=np.float32)
|
||||
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
|
||||
mb_dones = np.asarray(mb_dones, dtype=np.bool)
|
||||
last_values = self.model.value(self.obs, S=self.states, M=self.dones)
|
||||
|
||||
# discount/bootstrap off value fn
|
||||
mb_returns = np.zeros_like(mb_rewards)
|
||||
mb_advs = np.zeros_like(mb_rewards)
|
||||
lastgaelam = 0
|
||||
for t in reversed(range(self.nsteps)):
|
||||
if t == self.nsteps - 1:
|
||||
nextnonterminal = 1.0 - self.dones
|
||||
nextvalues = last_values
|
||||
else:
|
||||
nextnonterminal = 1.0 - mb_dones[t+1]
|
||||
nextvalues = mb_values[t+1]
|
||||
delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t]
|
||||
mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam
|
||||
mb_returns = mb_advs + mb_values
|
||||
return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)),
|
||||
mb_states, epinfos)
|
||||
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
|
||||
def sf01(arr):
|
||||
"""
|
||||
swap and then flatten axes 0 and 1
|
||||
"""
|
||||
s = arr.shape
|
||||
return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
|
||||
|
||||
def constfn(val):
|
||||
def f(_):
|
||||
@@ -230,7 +21,7 @@ def constfn(val):
|
||||
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4,
|
||||
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
|
||||
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
|
||||
save_interval=0, load_path=None, **network_kwargs):
|
||||
save_interval=0, load_path=None, model_fn=None, **network_kwargs):
|
||||
'''
|
||||
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)
|
||||
|
||||
@@ -308,10 +99,14 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
nbatch_train = nbatch // nminibatches
|
||||
|
||||
# Instantiate the model object (that creates act_model and train_model)
|
||||
make_model = lambda : Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
|
||||
if model_fn is None:
|
||||
from baselines.ppo2.model import Model
|
||||
model_fn = Model
|
||||
|
||||
model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
|
||||
nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
|
||||
max_grad_norm=max_grad_norm)
|
||||
model = make_model()
|
||||
|
||||
if load_path is not None:
|
||||
model.load(load_path)
|
||||
# Instantiate the runner object
|
||||
@@ -319,8 +114,6 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
|
||||
if eval_env is not None:
|
||||
eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam)
|
||||
|
||||
|
||||
|
||||
epinfobuf = deque(maxlen=100)
|
||||
if eval_env is not None:
|
||||
eval_epinfobuf = deque(maxlen=100)
|
||||
|
76
baselines/ppo2/runner.py
Normal file
76
baselines/ppo2/runner.py
Normal file
@@ -0,0 +1,76 @@
|
||||
import numpy as np
|
||||
from baselines.common.runners import AbstractEnvRunner
|
||||
|
||||
class Runner(AbstractEnvRunner):
|
||||
"""
|
||||
We use this object to make a mini batch of experiences
|
||||
__init__:
|
||||
- Initialize the runner
|
||||
|
||||
run():
|
||||
- Make a mini batch
|
||||
"""
|
||||
def __init__(self, *, env, model, nsteps, gamma, lam):
|
||||
super().__init__(env=env, model=model, nsteps=nsteps)
|
||||
# Lambda used in GAE (General Advantage Estimation)
|
||||
self.lam = lam
|
||||
# Discount rate
|
||||
self.gamma = gamma
|
||||
|
||||
def run(self):
|
||||
# Here, we init the lists that will contain the mb of experiences
|
||||
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
|
||||
mb_states = self.states
|
||||
epinfos = []
|
||||
# For n in range number of steps
|
||||
for _ in range(self.nsteps):
|
||||
# Given observations, get action value and neglopacs
|
||||
# We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init
|
||||
actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones)
|
||||
mb_obs.append(self.obs.copy())
|
||||
mb_actions.append(actions)
|
||||
mb_values.append(values)
|
||||
mb_neglogpacs.append(neglogpacs)
|
||||
mb_dones.append(self.dones)
|
||||
|
||||
# Take actions in env and look the results
|
||||
# Infos contains a ton of useful informations
|
||||
self.obs[:], rewards, self.dones, infos = self.env.step(actions)
|
||||
for info in infos:
|
||||
maybeepinfo = info.get('episode')
|
||||
if maybeepinfo: epinfos.append(maybeepinfo)
|
||||
mb_rewards.append(rewards)
|
||||
#batch of steps to batch of rollouts
|
||||
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
|
||||
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
|
||||
mb_actions = np.asarray(mb_actions)
|
||||
mb_values = np.asarray(mb_values, dtype=np.float32)
|
||||
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
|
||||
mb_dones = np.asarray(mb_dones, dtype=np.bool)
|
||||
last_values = self.model.value(self.obs, S=self.states, M=self.dones)
|
||||
|
||||
# discount/bootstrap off value fn
|
||||
mb_returns = np.zeros_like(mb_rewards)
|
||||
mb_advs = np.zeros_like(mb_rewards)
|
||||
lastgaelam = 0
|
||||
for t in reversed(range(self.nsteps)):
|
||||
if t == self.nsteps - 1:
|
||||
nextnonterminal = 1.0 - self.dones
|
||||
nextvalues = last_values
|
||||
else:
|
||||
nextnonterminal = 1.0 - mb_dones[t+1]
|
||||
nextvalues = mb_values[t+1]
|
||||
delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t]
|
||||
mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam
|
||||
mb_returns = mb_advs + mb_values
|
||||
return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)),
|
||||
mb_states, epinfos)
|
||||
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
|
||||
def sf01(arr):
|
||||
"""
|
||||
swap and then flatten axes 0 and 1
|
||||
"""
|
||||
s = arr.shape
|
||||
return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
|
||||
|
||||
|
34
baselines/ppo2/test_microbatches.py
Normal file
34
baselines/ppo2/test_microbatches.py
Normal file
@@ -0,0 +1,34 @@
|
||||
import gym
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
|
||||
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
|
||||
from baselines.common.tf_util import make_session
|
||||
from baselines.ppo2.ppo2 import learn
|
||||
|
||||
from baselines.ppo2.microbatched_model import MicrobatchedModel
|
||||
|
||||
def test_microbatches():
|
||||
def env_fn():
|
||||
env = gym.make('CartPole-v0')
|
||||
env.seed(0)
|
||||
return env
|
||||
|
||||
learn_fn = partial(learn, network='mlp', nsteps=32, total_timesteps=32, seed=0)
|
||||
|
||||
env_ref = DummyVecEnv([env_fn])
|
||||
sess_ref = make_session(make_default=True, graph=tf.Graph())
|
||||
learn_fn(env=env_ref)
|
||||
vars_ref = {v.name: sess_ref.run(v) for v in tf.trainable_variables()}
|
||||
|
||||
env_test = DummyVecEnv([env_fn])
|
||||
sess_test = make_session(make_default=True, graph=tf.Graph())
|
||||
learn_fn(env=env_test, model_fn=partial(MicrobatchedModel, microbatch_size=2))
|
||||
vars_test = {v.name: sess_test.run(v) for v in tf.trainable_variables()}
|
||||
|
||||
for v in vars_ref:
|
||||
np.testing.assert_allclose(vars_ref[v], vars_test[v], atol=1e-3)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_microbatches()
|
Reference in New Issue
Block a user