microbatches in ppo2, custom frame size in WarpFrame, matching fc layer only when needed (#707)

* joshim5 changes (width and height to WarpFrame wrapper)

* match network output with action distribution via a linear layer only if necessary (#167)

* support color vs. grayscale option in WarpFrame wrapper (#166)

* support color vs. grayscale option in WarpFrame wrapper

* Support color in other wrappers

* Updated per Peters suggestions

* fixing test failures

* ppo2 with microbatches (#168)

* pass microbatch_size to the model during construction

* microbatch fixes and test (#169)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* Peterz joshim5 subclass ppo2 model (#170)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* subclassing the model to make microbatched version of model WIP

* made microbatched model a subclass of ppo2 Model

* flake8 complaint

* mpi-less ppo2 (resolving merge conflict)

* flake8 and mpi4py imports in ppo2/model.py

* more un-mpying
This commit is contained in:
pzhokhov
2018-11-09 11:18:05 -08:00
committed by GitHub
parent d80acbb4d1
commit 52255beda5
6 changed files with 353 additions and 217 deletions

View File

@@ -103,9 +103,9 @@ def test_coexistence(learn_fn, network_fn):
kwargs.update(learn_kwargs[learn_fn]) kwargs.update(learn_kwargs[learn_fn])
learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs) learn = partial(learn, env=env, network=network_fn, total_timesteps=0, **kwargs)
make_session(make_default=True, graph=tf.Graph()); make_session(make_default=True, graph=tf.Graph())
model1 = learn(seed=1) model1 = learn(seed=1)
make_session(make_default=True, graph=tf.Graph()); make_session(make_default=True, graph=tf.Graph())
model2 = learn(seed=2) model2 = learn(seed=2)
model1.step(env.observation_space.sample()) model1.step(env.observation_space.sample())

View File

@@ -0,0 +1,76 @@
import tensorflow as tf
import numpy as np
from baselines.ppo2.model import Model
class MicrobatchedModel(Model):
"""
Model that does training one microbatch at a time - when gradient computation
on the entire minibatch causes some overflow
"""
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size):
self.nmicrobatches = nbatch_train // microbatch_size
self.microbatch_size = microbatch_size
assert nbatch_train % microbatch_size == 0, 'microbatch_size ({}) should divide nbatch_train ({}) evenly'.format(microbatch_size, nbatch_train)
super().__init__(
policy=policy,
ob_space=ob_space,
ac_space=ac_space,
nbatch_act=nbatch_act,
nbatch_train=microbatch_size,
nsteps=nsteps,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm)
self.grads_ph = [tf.placeholder(dtype=g.dtype, shape=g.shape) for g in self.grads]
grads_ph_and_vars = list(zip(self.grads_ph, self.var))
self._apply_gradients_op = self.trainer.apply_gradients(grads_ph_and_vars)
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
assert states is None, "microbatches with recurrent models are not supported yet"
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
# Returns = R + yV(s')
advs = returns - values
# Normalize the advantages
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
# Initialize empty list for per-microbatch stats like pg_loss, vf_loss, entropy, approxkl (whatever is in self.stats_list)
stats_vs = []
for microbatch_idx in range(self.nmicrobatches):
_sli = range(microbatch_idx * self.microbatch_size, (microbatch_idx+1) * self.microbatch_size)
td_map = {
self.train_model.X: obs[_sli],
self.A:actions[_sli],
self.ADV:advs[_sli],
self.R:returns[_sli],
self.CLIPRANGE:cliprange,
self.OLDNEGLOGPAC:neglogpacs[_sli],
self.OLDVPRED:values[_sli]
}
# Compute gradient on a microbatch (note that variables do not change here) ...
grad_v, stats_v = self.sess.run([self.grads, self.stats_list], td_map)
if microbatch_idx == 0:
sum_grad_v = grad_v
else:
# .. and add to the total of the gradients
for i, g in enumerate(grad_v):
sum_grad_v[i] += g
stats_vs.append(stats_v)
feed_dict = {ph: sum_g / self.nmicrobatches for ph, sum_g in zip(self.grads_ph, sum_grad_v)}
feed_dict[self.LR] = lr
# Update variables using average of the gradients
self.sess.run(self._apply_gradients_op, feed_dict)
# Return average of the stats
return np.mean(np.array(stats_vs), axis=0).tolist()

157
baselines/ppo2/model.py Normal file
View File

@@ -0,0 +1,157 @@
import tensorflow as tf
import functools
from baselines.common.tf_util import get_session, save_variables, load_variables
from baselines.common.tf_util import initialize
try:
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
from mpi4py import MPI
from baselines.common.mpi_util import sync_from_root
except ImportError:
MPI = None
class Model(object):
"""
We use this object to :
__init__:
- Creates the step_model
- Creates the train_model
train():
- Make the training part (feedforward and retropropagation of gradients)
save/load():
- Save load the model
"""
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size=None):
self.sess = sess = get_session()
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
# CREATE OUR TWO MODELS
# act_model that is used for sampling
act_model = policy(nbatch_act, 1, sess)
# Train model for training
if microbatch_size is None:
train_model = policy(nbatch_train, nsteps, sess)
else:
train_model = policy(microbatch_size, nsteps, sess)
# CREATE THE PLACEHOLDERS
self.A = A = train_model.pdtype.sample_placeholder([None])
self.ADV = ADV = tf.placeholder(tf.float32, [None])
self.R = R = tf.placeholder(tf.float32, [None])
# Keep track of old actor
self.OLDNEGLOGPAC = OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
# Keep track of old critic
self.OLDVPRED = OLDVPRED = tf.placeholder(tf.float32, [None])
self.LR = LR = tf.placeholder(tf.float32, [])
# Cliprange
self.CLIPRANGE = CLIPRANGE = tf.placeholder(tf.float32, [])
neglogpac = train_model.pd.neglogp(A)
# Calculate the entropy
# Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
entropy = tf.reduce_mean(train_model.pd.entropy())
# CALCULATE THE LOSS
# Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss
# Clip the value to reduce variability during Critic training
# Get the predicted value
vpred = train_model.vf
vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE)
# Unclipped value
vf_losses1 = tf.square(vpred - R)
# Clipped value
vf_losses2 = tf.square(vpredclipped - R)
vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
# Calculate ratio (pi current policy / pi old policy)
ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
# Defining Loss = - J is equivalent to max J
pg_losses = -ADV * ratio
pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
# Final PG loss
pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
# Total loss
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
# UPDATE THE PARAMETERS USING LOSS
# 1. Get the model parameters
params = tf.trainable_variables('ppo2_model')
# 2. Build our trainer
if MPI is not None:
self.trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
else:
self.trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
# 3. Calculate the gradients
grads_and_var = self.trainer.compute_gradients(loss, params)
grads, var = zip(*grads_and_var)
if max_grad_norm is not None:
# Clip the gradients (normalize)
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
grads_and_var = list(zip(grads, var))
# zip aggregate each gradient with parameters associated
# For instance zip(ABCD, xyza) => Ax, By, Cz, Da
self.grads = grads
self.var = var
self._train_op = self.trainer.apply_gradients(grads_and_var)
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac']
self.stats_list = [pg_loss, vf_loss, entropy, approxkl, clipfrac]
self.train_model = train_model
self.act_model = act_model
self.step = act_model.step
self.value = act_model.value
self.initial_state = act_model.initial_state
self.save = functools.partial(save_variables, sess=sess)
self.load = functools.partial(load_variables, sess=sess)
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
initialize()
else:
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
sync_from_root(sess, global_variables) #pylint: disable=E1101
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
# Returns = R + yV(s')
advs = returns - values
# Normalize the advantages
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
td_map = {
self.train_model.X : obs,
self.A : actions,
self.ADV : advs,
self.R : returns,
self.LR : lr,
self.CLIPRANGE : cliprange,
self.OLDNEGLOGPAC : neglogpacs,
self.OLDVPRED : values
}
if states is not None:
td_map[self.train_model.S] = states
td_map[self.train_model.M] = masks
return self.sess.run(
self.stats_list + [self._train_op],
td_map
)[:-1]

View File

@@ -1,226 +1,17 @@
import os import os
import time import time
import functools
import numpy as np import numpy as np
import os.path as osp import os.path as osp
import tensorflow as tf
from baselines import logger from baselines import logger
from collections import deque from collections import deque
from baselines.common import explained_variance, set_global_seeds from baselines.common import explained_variance, set_global_seeds
from baselines.common.policies import build_policy from baselines.common.policies import build_policy
from baselines.common.runners import AbstractEnvRunner
from baselines.common.tf_util import get_session, save_variables, load_variables
try: try:
from baselines.common.mpi_adam_optimizer import MpiAdamOptimizer
from mpi4py import MPI from mpi4py import MPI
from baselines.common.mpi_util import sync_from_root
except ImportError: except ImportError:
MPI = None MPI = None
from baselines.ppo2.runner import Runner
from baselines.common.tf_util import initialize
class Model(object):
"""
We use this object to :
__init__:
- Creates the step_model
- Creates the train_model
train():
- Make the training part (feedforward and retropropagation of gradients)
save/load():
- Save load the model
"""
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm):
sess = get_session()
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
# CREATE OUR TWO MODELS
# act_model that is used for sampling
act_model = policy(nbatch_act, 1, sess)
# Train model for training
train_model = policy(nbatch_train, nsteps, sess)
# CREATE THE PLACEHOLDERS
A = train_model.pdtype.sample_placeholder([None])
ADV = tf.placeholder(tf.float32, [None])
R = tf.placeholder(tf.float32, [None])
# Keep track of old actor
OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
# Keep track of old critic
OLDVPRED = tf.placeholder(tf.float32, [None])
LR = tf.placeholder(tf.float32, [])
# Cliprange
CLIPRANGE = tf.placeholder(tf.float32, [])
neglogpac = train_model.pd.neglogp(A)
# Calculate the entropy
# Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
entropy = tf.reduce_mean(train_model.pd.entropy())
# CALCULATE THE LOSS
# Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss
# Clip the value to reduce variability during Critic training
# Get the predicted value
vpred = train_model.vf
vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE)
# Unclipped value
vf_losses1 = tf.square(vpred - R)
# Clipped value
vf_losses2 = tf.square(vpredclipped - R)
vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
# Calculate ratio (pi current policy / pi old policy)
ratio = tf.exp(OLDNEGLOGPAC - neglogpac)
# Defining Loss = - J is equivalent to max J
pg_losses = -ADV * ratio
pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE)
# Final PG loss
pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))
# Total loss
loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
# UPDATE THE PARAMETERS USING LOSS
# 1. Get the model parameters
params = tf.trainable_variables('ppo2_model')
# 2. Build our trainer
if MPI is not None:
trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
else:
trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
# 3. Calculate the gradients
grads_and_var = trainer.compute_gradients(loss, params)
grads, var = zip(*grads_and_var)
if max_grad_norm is not None:
# Clip the gradients (normalize)
grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
grads_and_var = list(zip(grads, var))
# zip aggregate each gradient with parameters associated
# For instance zip(ABCD, xyza) => Ax, By, Cz, Da
_train = trainer.apply_gradients(grads_and_var)
def train(lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)
# Returns = R + yV(s')
advs = returns - values
# Normalize the advantages
advs = (advs - advs.mean()) / (advs.std() + 1e-8)
td_map = {train_model.X:obs, A:actions, ADV:advs, R:returns, LR:lr,
CLIPRANGE:cliprange, OLDNEGLOGPAC:neglogpacs, OLDVPRED:values}
if states is not None:
td_map[train_model.S] = states
td_map[train_model.M] = masks
return sess.run(
[pg_loss, vf_loss, entropy, approxkl, clipfrac, _train],
td_map
)[:-1]
self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac']
self.train = train
self.train_model = train_model
self.act_model = act_model
self.step = act_model.step
self.value = act_model.value
self.initial_state = act_model.initial_state
self.save = functools.partial(save_variables, sess=sess)
self.load = functools.partial(load_variables, sess=sess)
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
initialize()
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
if MPI is not None:
sync_from_root(sess, global_variables) #pylint: disable=E1101
class Runner(AbstractEnvRunner):
"""
We use this object to make a mini batch of experiences
__init__:
- Initialize the runner
run():
- Make a mini batch
"""
def __init__(self, *, env, model, nsteps, gamma, lam):
super().__init__(env=env, model=model, nsteps=nsteps)
# Lambda used in GAE (General Advantage Estimation)
self.lam = lam
# Discount rate
self.gamma = gamma
def run(self):
# Here, we init the lists that will contain the mb of experiences
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
mb_states = self.states
epinfos = []
# For n in range number of steps
for _ in range(self.nsteps):
# Given observations, get action value and neglopacs
# We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init
actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones)
mb_obs.append(self.obs.copy())
mb_actions.append(actions)
mb_values.append(values)
mb_neglogpacs.append(neglogpacs)
mb_dones.append(self.dones)
# Take actions in env and look the results
# Infos contains a ton of useful informations
self.obs[:], rewards, self.dones, infos = self.env.step(actions)
for info in infos:
maybeepinfo = info.get('episode')
if maybeepinfo: epinfos.append(maybeepinfo)
mb_rewards.append(rewards)
#batch of steps to batch of rollouts
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
mb_actions = np.asarray(mb_actions)
mb_values = np.asarray(mb_values, dtype=np.float32)
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
mb_dones = np.asarray(mb_dones, dtype=np.bool)
last_values = self.model.value(self.obs, S=self.states, M=self.dones)
# discount/bootstrap off value fn
mb_returns = np.zeros_like(mb_rewards)
mb_advs = np.zeros_like(mb_rewards)
lastgaelam = 0
for t in reversed(range(self.nsteps)):
if t == self.nsteps - 1:
nextnonterminal = 1.0 - self.dones
nextvalues = last_values
else:
nextnonterminal = 1.0 - mb_dones[t+1]
nextvalues = mb_values[t+1]
delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t]
mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam
mb_returns = mb_advs + mb_values
return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)),
mb_states, epinfos)
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
def sf01(arr):
"""
swap and then flatten axes 0 and 1
"""
s = arr.shape
return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])
def constfn(val): def constfn(val):
def f(_): def f(_):
@@ -230,7 +21,7 @@ def constfn(val):
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4, def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4,
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95, vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2, log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
save_interval=0, load_path=None, **network_kwargs): save_interval=0, load_path=None, model_fn=None, **network_kwargs):
''' '''
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347) Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)
@@ -308,10 +99,14 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
nbatch_train = nbatch // nminibatches nbatch_train = nbatch // nminibatches
# Instantiate the model object (that creates act_model and train_model) # Instantiate the model object (that creates act_model and train_model)
make_model = lambda : Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, if model_fn is None:
from baselines.ppo2.model import Model
model_fn = Model
model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
max_grad_norm=max_grad_norm) max_grad_norm=max_grad_norm)
model = make_model()
if load_path is not None: if load_path is not None:
model.load(load_path) model.load(load_path)
# Instantiate the runner object # Instantiate the runner object
@@ -319,8 +114,6 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
if eval_env is not None: if eval_env is not None:
eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam) eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam)
epinfobuf = deque(maxlen=100) epinfobuf = deque(maxlen=100)
if eval_env is not None: if eval_env is not None:
eval_epinfobuf = deque(maxlen=100) eval_epinfobuf = deque(maxlen=100)

76
baselines/ppo2/runner.py Normal file
View File

@@ -0,0 +1,76 @@
import numpy as np
from baselines.common.runners import AbstractEnvRunner
class Runner(AbstractEnvRunner):
"""
We use this object to make a mini batch of experiences
__init__:
- Initialize the runner
run():
- Make a mini batch
"""
def __init__(self, *, env, model, nsteps, gamma, lam):
super().__init__(env=env, model=model, nsteps=nsteps)
# Lambda used in GAE (General Advantage Estimation)
self.lam = lam
# Discount rate
self.gamma = gamma
def run(self):
# Here, we init the lists that will contain the mb of experiences
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[]
mb_states = self.states
epinfos = []
# For n in range number of steps
for _ in range(self.nsteps):
# Given observations, get action value and neglopacs
# We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init
actions, values, self.states, neglogpacs = self.model.step(self.obs, S=self.states, M=self.dones)
mb_obs.append(self.obs.copy())
mb_actions.append(actions)
mb_values.append(values)
mb_neglogpacs.append(neglogpacs)
mb_dones.append(self.dones)
# Take actions in env and look the results
# Infos contains a ton of useful informations
self.obs[:], rewards, self.dones, infos = self.env.step(actions)
for info in infos:
maybeepinfo = info.get('episode')
if maybeepinfo: epinfos.append(maybeepinfo)
mb_rewards.append(rewards)
#batch of steps to batch of rollouts
mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32)
mb_actions = np.asarray(mb_actions)
mb_values = np.asarray(mb_values, dtype=np.float32)
mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32)
mb_dones = np.asarray(mb_dones, dtype=np.bool)
last_values = self.model.value(self.obs, S=self.states, M=self.dones)
# discount/bootstrap off value fn
mb_returns = np.zeros_like(mb_rewards)
mb_advs = np.zeros_like(mb_rewards)
lastgaelam = 0
for t in reversed(range(self.nsteps)):
if t == self.nsteps - 1:
nextnonterminal = 1.0 - self.dones
nextvalues = last_values
else:
nextnonterminal = 1.0 - mb_dones[t+1]
nextvalues = mb_values[t+1]
delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t]
mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam
mb_returns = mb_advs + mb_values
return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)),
mb_states, epinfos)
# obs, returns, masks, actions, values, neglogpacs, states = runner.run()
def sf01(arr):
"""
swap and then flatten axes 0 and 1
"""
s = arr.shape
return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:])

View File

@@ -0,0 +1,34 @@
import gym
import tensorflow as tf
import numpy as np
from functools import partial
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.tf_util import make_session
from baselines.ppo2.ppo2 import learn
from baselines.ppo2.microbatched_model import MicrobatchedModel
def test_microbatches():
def env_fn():
env = gym.make('CartPole-v0')
env.seed(0)
return env
learn_fn = partial(learn, network='mlp', nsteps=32, total_timesteps=32, seed=0)
env_ref = DummyVecEnv([env_fn])
sess_ref = make_session(make_default=True, graph=tf.Graph())
learn_fn(env=env_ref)
vars_ref = {v.name: sess_ref.run(v) for v in tf.trainable_variables()}
env_test = DummyVecEnv([env_fn])
sess_test = make_session(make_default=True, graph=tf.Graph())
learn_fn(env=env_test, model_fn=partial(MicrobatchedModel, microbatch_size=2))
vars_test = {v.name: sess_test.run(v) for v in tf.trainable_variables()}
for v in vars_ref:
np.testing.assert_allclose(vars_ref[v], vars_test[v], atol=1e-3)
if __name__ == '__main__':
test_microbatches()