squash-merged latest master

This commit is contained in:
Peter Zhokhov
2018-10-29 15:28:59 -07:00
parent d96e20ff27
commit 6f148fdb0d
29 changed files with 570 additions and 289 deletions

View File

@@ -7,6 +7,7 @@ from baselines import logger
from baselines.common import set_global_seeds
from baselines.common.policies import build_policy
from baselines.common.tf_util import get_session, save_variables
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.a2c.utils import batch_to_seq, seq_to_batch
from baselines.a2c.utils import cat_entropy_softmax
@@ -55,8 +56,7 @@ def q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma):
# return tf.minimum(1 + eps_clip, tf.maximum(1 - eps_clip, ratio))
class Model(object):
def __init__(self, policy, ob_space, ac_space, nenvs, nsteps, nstack, num_procs,
ent_coef, q_coef, gamma, max_grad_norm, lr,
def __init__(self, policy, ob_space, ac_space, nenvs, nsteps, ent_coef, q_coef, gamma, max_grad_norm, lr,
rprop_alpha, rprop_epsilon, total_timesteps, lrschedule,
c, trust_region, alpha, delta):
@@ -71,8 +71,8 @@ class Model(object):
LR = tf.placeholder(tf.float32, [])
eps = 1e-6
step_ob_placeholder = tf.placeholder(dtype=ob_space.dtype, shape=(nenvs,) + ob_space.shape[:-1] + (ob_space.shape[-1] * nstack,))
train_ob_placeholder = tf.placeholder(dtype=ob_space.dtype, shape=(nenvs*(nsteps+1),) + ob_space.shape[:-1] + (ob_space.shape[-1] * nstack,))
step_ob_placeholder = tf.placeholder(dtype=ob_space.dtype, shape=(nenvs,) + ob_space.shape)
train_ob_placeholder = tf.placeholder(dtype=ob_space.dtype, shape=(nenvs*(nsteps+1),) + ob_space.shape)
with tf.variable_scope('acer_model', reuse=tf.AUTO_REUSE):
step_model = policy(observ_placeholder=step_ob_placeholder, sess=sess)
@@ -247,6 +247,7 @@ class Acer():
# get obs, actions, rewards, mus, dones from buffer.
obs, actions, rewards, mus, dones, masks = buffer.get()
# reshape stuff correctly
obs = obs.reshape(runner.batch_ob_shape)
actions = actions.reshape([runner.nbatch])
@@ -270,7 +271,7 @@ class Acer():
logger.dump_tabular()
def learn(network, env, seed=None, nsteps=20, nstack=4, total_timesteps=int(80e6), q_coef=0.5, ent_coef=0.01,
def learn(network, env, seed=None, nsteps=20, total_timesteps=int(80e6), q_coef=0.5, ent_coef=0.01,
max_grad_norm=10, lr=7e-4, lrschedule='linear', rprop_epsilon=1e-5, rprop_alpha=0.99, gamma=0.99,
log_interval=100, buffer_size=50000, replay_ratio=4, replay_start=10000, c=10.0,
trust_region=True, alpha=0.99, delta=1, load_path=None, **network_kwargs):
@@ -342,21 +343,24 @@ def learn(network, env, seed=None, nsteps=20, nstack=4, total_timesteps=int(80e6
print("Running Acer Simple")
print(locals())
set_global_seeds(seed)
policy = build_policy(env, network, estimate_q=True, **network_kwargs)
if not isinstance(env, VecFrameStack):
env = VecFrameStack(env, 1)
policy = build_policy(env, network, estimate_q=True, **network_kwargs)
nenvs = env.num_envs
ob_space = env.observation_space
ac_space = env.action_space
num_procs = len(env.remotes) if hasattr(env, 'remotes') else 1# HACK
model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack,
num_procs=num_procs, ent_coef=ent_coef, q_coef=q_coef, gamma=gamma,
nstack = env.nstack
model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps,
ent_coef=ent_coef, q_coef=q_coef, gamma=gamma,
max_grad_norm=max_grad_norm, lr=lr, rprop_alpha=rprop_alpha, rprop_epsilon=rprop_epsilon,
total_timesteps=total_timesteps, lrschedule=lrschedule, c=c,
trust_region=trust_region, alpha=alpha, delta=delta)
runner = Runner(env=env, model=model, nsteps=nsteps, nstack=nstack)
runner = Runner(env=env, model=model, nsteps=nsteps)
if replay_ratio > 0:
buffer = Buffer(env=env, nsteps=nsteps, nstack=nstack, size=buffer_size)
buffer = Buffer(env=env, nsteps=nsteps, size=buffer_size)
else:
buffer = None
nbatch = nenvs*nsteps

View File

@@ -2,11 +2,16 @@ import numpy as np
class Buffer(object):
# gets obs, actions, rewards, mu's, (states, masks), dones
def __init__(self, env, nsteps, nstack, size=50000):
def __init__(self, env, nsteps, size=50000):
self.nenv = env.num_envs
self.nsteps = nsteps
self.nh, self.nw, self.nc = env.observation_space.shape
self.nstack = nstack
# self.nh, self.nw, self.nc = env.observation_space.shape
self.obs_shape = env.observation_space.shape
self.obs_dtype = env.observation_space.dtype
self.ac_dtype = env.action_space.dtype
self.nc = self.obs_shape[-1]
self.nstack = env.nstack
self.nc //= self.nstack
self.nbatch = self.nenv * self.nsteps
self.size = size // (self.nsteps) # Each loc contains nenv * nsteps frames, thus total buffer is nenv * size frames
@@ -33,22 +38,11 @@ class Buffer(object):
# Generate stacked frames
def decode(self, enc_obs, dones):
# enc_obs has shape [nenvs, nsteps + nstack, nh, nw, nc]
# dones has shape [nenvs, nsteps, nh, nw, nc]
# dones has shape [nenvs, nsteps]
# returns stacked obs of shape [nenv, (nsteps + 1), nh, nw, nstack*nc]
nstack, nenv, nsteps, nh, nw, nc = self.nstack, self.nenv, self.nsteps, self.nh, self.nw, self.nc
y = np.empty([nsteps + nstack - 1, nenv, 1, 1, 1], dtype=np.float32)
obs = np.zeros([nstack, nsteps + nstack, nenv, nh, nw, nc], dtype=np.uint8)
x = np.reshape(enc_obs, [nenv, nsteps + nstack, nh, nw, nc]).swapaxes(1,
0) # [nsteps + nstack, nenv, nh, nw, nc]
y[3:] = np.reshape(1.0 - dones, [nenv, nsteps, 1, 1, 1]).swapaxes(1, 0) # keep
y[:3] = 1.0
# y = np.reshape(1 - dones, [nenvs, nsteps, 1, 1, 1])
for i in range(nstack):
obs[-(i + 1), i:] = x
# obs[:,i:,:,:,-(i+1),:] = x
x = x[:-1] * y
y = y[1:]
return np.reshape(obs[:, 3:].transpose((2, 1, 3, 4, 0, 5)), [nenv, (nsteps + 1), nh, nw, nstack * nc])
return _stack_obs(enc_obs, dones,
nsteps=self.nsteps)
def put(self, enc_obs, actions, rewards, mus, dones, masks):
# enc_obs [nenv, (nsteps + nstack), nh, nw, nc]
@@ -56,8 +50,8 @@ class Buffer(object):
# mus [nenv, nsteps, nact]
if self.enc_obs is None:
self.enc_obs = np.empty([self.size] + list(enc_obs.shape), dtype=np.uint8)
self.actions = np.empty([self.size] + list(actions.shape), dtype=np.int32)
self.enc_obs = np.empty([self.size] + list(enc_obs.shape), dtype=self.obs_dtype)
self.actions = np.empty([self.size] + list(actions.shape), dtype=self.ac_dtype)
self.rewards = np.empty([self.size] + list(rewards.shape), dtype=np.float32)
self.mus = np.empty([self.size] + list(mus.shape), dtype=np.float32)
self.dones = np.empty([self.size] + list(dones.shape), dtype=np.bool)
@@ -101,3 +95,62 @@ class Buffer(object):
mus = take(self.mus)
masks = take(self.masks)
return obs, actions, rewards, mus, dones, masks
def _stack_obs_ref(enc_obs, dones, nsteps):
nenv = enc_obs.shape[0]
nstack = enc_obs.shape[1] - nsteps
nh, nw, nc = enc_obs.shape[2:]
obs_dtype = enc_obs.dtype
obs_shape = (nh, nw, nc*nstack)
mask = np.empty([nsteps + nstack - 1, nenv, 1, 1, 1], dtype=np.float32)
obs = np.zeros([nstack, nsteps + nstack, nenv, nh, nw, nc], dtype=obs_dtype)
x = np.reshape(enc_obs, [nenv, nsteps + nstack, nh, nw, nc]).swapaxes(1, 0) # [nsteps + nstack, nenv, nh, nw, nc]
mask[nstack-1:] = np.reshape(1.0 - dones, [nenv, nsteps, 1, 1, 1]).swapaxes(1, 0) # keep
mask[:nstack-1] = 1.0
# y = np.reshape(1 - dones, [nenvs, nsteps, 1, 1, 1])
for i in range(nstack):
obs[-(i + 1), i:] = x
# obs[:,i:,:,:,-(i+1),:] = x
x = x[:-1] * mask
mask = mask[1:]
return np.reshape(obs[:, (nstack-1):].transpose((2, 1, 3, 4, 0, 5)), (nenv, (nsteps + 1)) + obs_shape)
def _stack_obs(enc_obs, dones, nsteps):
nenv = enc_obs.shape[0]
nstack = enc_obs.shape[1] - nsteps
nc = enc_obs.shape[-1]
obs_ = np.zeros((nenv, nsteps + 1) + enc_obs.shape[2:-1] + (enc_obs.shape[-1] * nstack, ), dtype=enc_obs.dtype)
mask = np.ones((nenv, nsteps+1), dtype=enc_obs.dtype)
mask[:, 1:] = 1.0 - dones
mask = mask.reshape(mask.shape + tuple(np.ones(len(enc_obs.shape)-2, dtype=np.uint8)))
for i in range(nstack-1, -1, -1):
obs_[..., i * nc : (i + 1) * nc] = enc_obs[:, i : i + nsteps + 1, :]
if i < nstack-1:
obs_[..., i * nc : (i + 1) * nc] *= mask
mask[:, 1:, ...] *= mask[:, :-1, ...]
return obs_
def test_stack_obs():
nstack = 7
nenv = 1
nsteps = 5
obs_shape = (2, 3, nstack)
enc_obs_shape = (nenv, nsteps + nstack) + obs_shape[:-1] + (1,)
enc_obs = np.random.random(enc_obs_shape)
dones = np.random.randint(low=0, high=2, size=(nenv, nsteps))
stacked_obs_ref = _stack_obs_ref(enc_obs, dones, nsteps=nsteps)
stacked_obs_test = _stack_obs(enc_obs, dones, nsteps=nsteps)
np.testing.assert_allclose(stacked_obs_ref, stacked_obs_test)

View File

@@ -1,30 +1,31 @@
import numpy as np
from baselines.common.runners import AbstractEnvRunner
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from gym import spaces
class Runner(AbstractEnvRunner):
def __init__(self, env, model, nsteps, nstack):
def __init__(self, env, model, nsteps):
super().__init__(env=env, model=model, nsteps=nsteps)
self.nstack = nstack
nh, nw, nc = env.observation_space.shape
self.nc = nc # nc = 1 for atari, but just in case
assert isinstance(env.action_space, spaces.Discrete), 'This ACER implementation works only with discrete action spaces!'
assert isinstance(env, VecFrameStack)
self.nact = env.action_space.n
nenv = self.nenv
self.nbatch = nenv * nsteps
self.batch_ob_shape = (nenv*(nsteps+1), nh, nw, nc*nstack)
self.obs = np.zeros((nenv, nh, nw, nc * nstack), dtype=np.uint8)
obs = env.reset()
self.update_obs(obs)
self.batch_ob_shape = (nenv*(nsteps+1),) + env.observation_space.shape
self.obs = env.reset()
self.obs_dtype = env.observation_space.dtype
self.ac_dtype = env.action_space.dtype
self.nstack = self.env.nstack
self.nc = self.batch_ob_shape[-1] // self.nstack
def update_obs(self, obs, dones=None):
#self.obs = obs
if dones is not None:
self.obs *= (1 - dones.astype(np.uint8))[:, None, None, None]
self.obs = np.roll(self.obs, shift=-self.nc, axis=3)
self.obs[:, :, :, -self.nc:] = obs[:, :, :, :]
def run(self):
enc_obs = np.split(self.obs, self.nstack, axis=3) # so now list of obs steps
# enc_obs = np.split(self.obs, self.nstack, axis=3) # so now list of obs steps
enc_obs = np.split(self.env.stackedobs, self.env.nstack, axis=-1)
mb_obs, mb_actions, mb_mus, mb_dones, mb_rewards = [], [], [], [], []
for _ in range(self.nsteps):
actions, mus, states = self.model._step(self.obs, S=self.states, M=self.dones)
@@ -36,15 +37,15 @@ class Runner(AbstractEnvRunner):
# states information for statefull models like LSTM
self.states = states
self.dones = dones
self.update_obs(obs, dones)
self.obs = obs
mb_rewards.append(rewards)
enc_obs.append(obs)
enc_obs.append(obs[..., -self.nc:])
mb_obs.append(np.copy(self.obs))
mb_dones.append(self.dones)
enc_obs = np.asarray(enc_obs, dtype=np.uint8).swapaxes(1, 0)
mb_obs = np.asarray(mb_obs, dtype=np.uint8).swapaxes(1, 0)
mb_actions = np.asarray(mb_actions, dtype=np.int32).swapaxes(1, 0)
enc_obs = np.asarray(enc_obs, dtype=self.obs_dtype).swapaxes(1, 0)
mb_obs = np.asarray(mb_obs, dtype=self.obs_dtype).swapaxes(1, 0)
mb_actions = np.asarray(mb_actions, dtype=self.ac_dtype).swapaxes(1, 0)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0)
mb_mus = np.asarray(mb_mus, dtype=np.float32).swapaxes(1, 0)

View File

@@ -21,16 +21,16 @@ class Model(object):
self.sess = sess = get_session()
nbatch = nenvs * nsteps
A = tf.placeholder(ac_space.dtype, [nbatch,] + list(ac_space.shape))
with tf.variable_scope('acktr_model', reuse=tf.AUTO_REUSE):
self.model = step_model = policy(nenvs, 1, sess=sess)
self.model2 = train_model = policy(nenvs*nsteps, nsteps, sess=sess)
A = train_model.pdtype.sample_placeholder([None])
ADV = tf.placeholder(tf.float32, [nbatch])
R = tf.placeholder(tf.float32, [nbatch])
PG_LR = tf.placeholder(tf.float32, [])
VF_LR = tf.placeholder(tf.float32, [])
with tf.variable_scope('acktr_model', reuse=tf.AUTO_REUSE):
self.model = step_model = policy(nenvs, 1, sess=sess)
self.model2 = train_model = policy(nenvs*nsteps, nsteps, sess=sess)
neglogpac = train_model.pd.neglogp(A)
self.logits = train_model.pi

View File

@@ -213,8 +213,11 @@ class LazyFrames(object):
def __getitem__(self, i):
return self._force()[i]
def make_atari(env_id):
def make_atari(env_id, timelimit=True):
# XXX(john): remove timelimit argument after gym is upgraded to allow double wrapping
env = gym.make(env_id)
if not timelimit:
env = env.env
assert 'NoFrameskip' in env.spec.id
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)

View File

@@ -16,30 +16,57 @@ from baselines.common import set_global_seeds
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.retro_wrappers import RewardScaler
from baselines.common import retro_wrappers
def make_vec_env(env_id, env_type, num_env, seed, wrapper_kwargs=None, start_index=0, reward_scale=1.0):
def make_vec_env(env_id, env_type, num_env, seed, wrapper_kwargs=None, start_index=0, reward_scale=1.0, gamestate=None):
"""
Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo.
"""
if wrapper_kwargs is None: wrapper_kwargs = {}
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
def make_env(rank): # pylint: disable=C0111
def _thunk():
env = make_atari(env_id) if env_type == 'atari' else gym.make(env_id)
env.seed(seed + 10000*mpi_rank + rank if seed is not None else None)
env = Monitor(env,
logger.get_dir() and os.path.join(logger.get_dir(), str(mpi_rank) + '.' + str(rank)),
allow_early_resets=True)
seed = seed + 10000 * mpi_rank if seed is not None else None
def make_thunk(rank):
return lambda: make_env(
env_id=env_id,
env_type=env_type,
subrank = rank,
seed=seed,
reward_scale=reward_scale,
gamestate=gamestate,
wrapper_kwargs=wrapper_kwargs
)
if env_type == 'atari': return wrap_deepmind(env, **wrapper_kwargs)
elif reward_scale != 1: return RewardScaler(env, reward_scale)
else: return env
return _thunk
set_global_seeds(seed)
if num_env > 1: return SubprocVecEnv([make_env(i + start_index) for i in range(num_env)])
else: return DummyVecEnv([make_env(start_index)])
if num_env > 1:
return SubprocVecEnv([make_thunk(i + start_index) for i in range(num_env)])
else:
return DummyVecEnv([make_thunk(start_index)])
def make_env(env_id, env_type, subrank=0, seed=None, reward_scale=1.0, gamestate=None, wrapper_kwargs={}):
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
if env_type == 'atari':
env = make_atari(env_id)
elif env_type == 'retro':
import retro
gamestate = gamestate or retro.State.DEFAULT
env = retro_wrappers.make_retro(game=env_id, max_episode_steps=10000, use_restricted_actions=retro.Actions.DISCRETE, state=gamestate)
else:
env = gym.make(env_id)
env.seed(seed + subrank if seed is not None else None)
env = Monitor(env,
logger.get_dir() and os.path.join(logger.get_dir(), str(mpi_rank) + '.' + str(subrank)),
allow_early_resets=True)
if env_type == 'atari':
return wrap_deepmind(env, **wrapper_kwargs)
elif reward_scale != 1:
return retro_wrappers.RewardScaler(env, reward_scale)
else:
return env
def make_mujoco_env(env_id, seed, reward_scale=1.0):
"""

View File

@@ -39,7 +39,7 @@ class PdType(object):
raise NotImplementedError
def pdfromflat(self, flat):
return self.pdclass()(flat)
def pdfromlatent(self, latent_vector):
def pdfromlatent(self, latent_vector, init_scale, init_bias):
raise NotImplementedError
def param_shape(self):
raise NotImplementedError
@@ -80,6 +80,11 @@ class MultiCategoricalPdType(PdType):
return MultiCategoricalPd
def pdfromflat(self, flat):
return MultiCategoricalPd(self.ncats, flat)
def pdfromlatent(self, latent, init_scale=1.0, init_bias=0.0):
pdparam = fc(latent, 'pi', self.ncats.sum(), init_scale=init_scale, init_bias=init_bias)
return self.pdfromflat(pdparam), pdparam
def param_shape(self):
return [sum(self.ncats)]
def sample_shape(self):

View File

@@ -1,98 +0,0 @@
from .running_stat import RunningStat
from collections import deque
import numpy as np
class Filter(object):
def __call__(self, x, update=True):
raise NotImplementedError
def reset(self):
pass
class IdentityFilter(Filter):
def __call__(self, x, update=True):
return x
class CompositionFilter(Filter):
def __init__(self, fs):
self.fs = fs
def __call__(self, x, update=True):
for f in self.fs:
x = f(x)
return x
def output_shape(self, input_space):
out = input_space.shape
for f in self.fs:
out = f.output_shape(out)
return out
class ZFilter(Filter):
"""
y = (x-mean)/std
using running estimates of mean,std
"""
def __init__(self, shape, demean=True, destd=True, clip=10.0):
self.demean = demean
self.destd = destd
self.clip = clip
self.rs = RunningStat(shape)
def __call__(self, x, update=True):
if update: self.rs.push(x)
if self.demean:
x = x - self.rs.mean
if self.destd:
x = x / (self.rs.std+1e-8)
if self.clip:
x = np.clip(x, -self.clip, self.clip)
return x
def output_shape(self, input_space):
return input_space.shape
class AddClock(Filter):
def __init__(self):
self.count = 0
def reset(self):
self.count = 0
def __call__(self, x, update=True):
return np.append(x, self.count/100.0)
def output_shape(self, input_space):
return (input_space.shape[0]+1,)
class FlattenFilter(Filter):
def __call__(self, x, update=True):
return x.ravel()
def output_shape(self, input_space):
return (int(np.prod(input_space.shape)),)
class Ind2OneHotFilter(Filter):
def __init__(self, n):
self.n = n
def __call__(self, x, update=True):
out = np.zeros(self.n)
out[x] = 1
return out
def output_shape(self, input_space):
return (input_space.n,)
class DivFilter(Filter):
def __init__(self, divisor):
self.divisor = divisor
def __call__(self, x, update=True):
return x / self.divisor
def output_shape(self, input_space):
return input_space.shape
class StackFilter(Filter):
def __init__(self, length):
self.stack = deque(maxlen=length)
def reset(self):
self.stack.clear()
def __call__(self, x, update=True):
self.stack.append(x)
while len(self.stack) < self.stack.maxlen:
self.stack.append(x)
return np.concatenate(self.stack, axis=-1)
def output_shape(self, input_space):
return input_space.shape[:-1] + (input_space.shape[-1] * self.stack.maxlen,)

View File

@@ -1,5 +1,6 @@
import numpy as np
import tensorflow as tf
from gym.spaces import Discrete, Box
from gym.spaces import Discrete, Box, MultiDiscrete
def observation_placeholder(ob_space, batch_size=None, name='Ob'):
'''
@@ -20,10 +21,14 @@ def observation_placeholder(ob_space, batch_size=None, name='Ob'):
tensorflow placeholder tensor
'''
assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box), \
assert isinstance(ob_space, Discrete) or isinstance(ob_space, Box) or isinstance(ob_space, MultiDiscrete), \
'Can only deal with Discrete and Box observation spaces for now'
return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=ob_space.dtype, name=name)
dtype = ob_space.dtype
if dtype == np.int8:
dtype = np.uint8
return tf.placeholder(shape=(batch_size,) + ob_space.shape, dtype=dtype, name=name)
def observation_input(ob_space, batch_size=None, name='Ob'):
@@ -48,9 +53,12 @@ def encode_observation(ob_space, placeholder):
'''
if isinstance(ob_space, Discrete):
return tf.to_float(tf.one_hot(placeholder, ob_space.n))
elif isinstance(ob_space, Box):
return tf.to_float(placeholder)
elif isinstance(ob_space, MultiDiscrete):
placeholder = tf.cast(placeholder, tf.int32)
one_hots = [tf.to_float(tf.one_hot(placeholder[..., i], ob_space.nvec[i])) for i in range(placeholder.shape[-1])]
return tf.concat(one_hots, axis=-1)
else:
raise NotImplementedError

View File

@@ -1,46 +0,0 @@
import numpy as np
# http://www.johndcook.com/blog/standard_deviation/
class RunningStat(object):
def __init__(self, shape):
self._n = 0
self._M = np.zeros(shape)
self._S = np.zeros(shape)
def push(self, x):
x = np.asarray(x)
assert x.shape == self._M.shape
self._n += 1
if self._n == 1:
self._M[...] = x
else:
oldM = self._M.copy()
self._M[...] = oldM + (x - oldM)/self._n
self._S[...] = self._S + (x - oldM)*(x - self._M)
@property
def n(self):
return self._n
@property
def mean(self):
return self._M
@property
def var(self):
return self._S/(self._n - 1) if self._n > 1 else np.square(self._M)
@property
def std(self):
return np.sqrt(self.var)
@property
def shape(self):
return self._M.shape
def test_running_stat():
for shp in ((), (3,), (3,4)):
li = []
rs = RunningStat(shp)
for _ in range(5):
val = np.random.randn(*shp)
rs.push(val)
li.append(val)
m = np.mean(li, axis=0)
assert np.allclose(rs.mean, m)
v = np.square(m) if (len(li) == 1) else np.var(li, ddof=1, axis=0)
assert np.allclose(rs.var, v)

View File

@@ -1,7 +1,7 @@
import numpy as np
from abc import abstractmethod
from gym import Env
from gym.spaces import Discrete, Box
from gym.spaces import MultiDiscrete, Discrete, Box
class IdentityEnv(Env):
@@ -53,6 +53,19 @@ class DiscreteIdentityEnv(IdentityEnv):
def _get_reward(self, actions):
return 1 if self.state == actions else 0
class MultiDiscreteIdentityEnv(IdentityEnv):
def __init__(
self,
dims,
episode_len=None,
):
self.action_space = MultiDiscrete(dims)
super().__init__(episode_len=episode_len)
def _get_reward(self, actions):
return 1 if all(self.state == actions) else 0
class BoxIdentityEnv(IdentityEnv):
def __init__(

View File

@@ -13,6 +13,7 @@ common_kwargs = dict(
learn_kwargs = {
'a2c' : dict(nsteps=32, value_network='copy', lr=0.05),
'acer': dict(value_network='copy'),
'acktr': dict(nsteps=32, value_network='copy', is_async=False),
'deepq': dict(total_timesteps=20000),
'ppo2': dict(value_network='copy'),
@@ -40,4 +41,4 @@ def test_cartpole(alg):
reward_per_episode_test(env_fn, learn_fn, 100)
if __name__ == '__main__':
test_cartpole('deepq')
test_cartpole('acer')

View File

@@ -1,5 +1,5 @@
import pytest
from baselines.common.tests.envs.identity_env import DiscreteIdentityEnv, BoxIdentityEnv
from baselines.common.tests.envs.identity_env import DiscreteIdentityEnv, BoxIdentityEnv, MultiDiscreteIdentityEnv
from baselines.run import get_learn_function
from baselines.common.tests.util import simple_test
@@ -20,8 +20,9 @@ learn_kwargs = {
}
algos_disc = ['a2c', 'deepq', 'ppo2', 'trpo_mpi']
algos_cont = ['a2c', 'ddpg', 'ppo2', 'trpo_mpi']
algos_disc = ['a2c', 'acktr', 'deepq', 'ppo2', 'trpo_mpi']
algos_multidisc = ['a2c', 'acktr', 'ppo2', 'trpo_mpi']
algos_cont = ['a2c', 'acktr', 'ddpg', 'ppo2', 'trpo_mpi']
@pytest.mark.slow
@pytest.mark.parametrize("alg", algos_disc)
@@ -38,6 +39,21 @@ def test_discrete_identity(alg):
env_fn = lambda: DiscreteIdentityEnv(10, episode_len=100)
simple_test(env_fn, learn_fn, 0.9)
@pytest.mark.slow
@pytest.mark.parametrize("alg", algos_multidisc)
def test_multidiscrete_identity(alg):
'''
Test if the algorithm (with an mlp policy)
can learn an identity transformation (i.e. return observation as an action)
'''
kwargs = learn_kwargs[alg]
kwargs.update(common_kwargs)
learn_fn = lambda e: get_learn_function(alg)(env=e, **kwargs)
env_fn = lambda: MultiDiscreteIdentityEnv((3,3), episode_len=100)
simple_test(env_fn, learn_fn, 0.9)
@pytest.mark.slow
@pytest.mark.parametrize("alg", algos_cont)
def test_continuous_identity(alg):
@@ -55,5 +71,5 @@ def test_continuous_identity(alg):
simple_test(env_fn, learn_fn, -0.1)
if __name__ == '__main__':
test_continuous_identity('ddpg')
test_multidiscrete_identity('acktr')

View File

@@ -17,8 +17,7 @@ common_kwargs = {
learn_args = {
'a2c': dict(total_timesteps=50000),
# TODO need to resolve inference (step) API differences for acer; also slow
# 'acer': dict(seed=0, total_timesteps=1000),
'acer': dict(total_timesteps=20000),
'deepq': dict(total_timesteps=5000),
'acktr': dict(total_timesteps=30000),
'ppo2': dict(total_timesteps=50000, lr=1e-3, nsteps=128, ent_coef=0.0),
@@ -47,4 +46,4 @@ def test_mnist(alg):
simple_test(env_fn, learn_fn, 0.6)
if __name__ == '__main__':
test_mnist('deepq')
test_mnist('acer')

View File

@@ -17,6 +17,7 @@ learn_kwargs = {
'deepq': {},
'a2c': {},
'acktr': {},
'acer': {},
'ppo2': {'nminibatches': 1, 'nsteps': 10},
'trpo_mpi': {},
}
@@ -37,7 +38,7 @@ def test_serialization(learn_fn, network_fn):
'''
if network_fn.endswith('lstm') and learn_fn in ['acktr', 'trpo_mpi', 'deepq']:
if network_fn.endswith('lstm') and learn_fn in ['acer', 'acktr', 'trpo_mpi', 'deepq']:
# TODO make acktr work with recurrent policies
# and test
# github issue: https://github.com/openai/baselines/issues/660

View File

@@ -20,8 +20,11 @@ class DummyVecEnv(VecEnv):
env = self.envs[0]
VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space)
obs_space = env.observation_space
if isinstance(obs_space, spaces.MultiDiscrete):
obs_space.shape = obs_space.shape[0]
self.keys, shapes, dtypes = obs_space_info(obs_space)
self.buf_obs = { k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys }
self.buf_dones = np.zeros((self.num_envs,), dtype=np.bool)
self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32)

View File

@@ -28,6 +28,3 @@ class VecFrameStack(VecEnvWrapper):
self.stackedobs[...] = 0
self.stackedobs[..., -obs.shape[-1]:] = obs
return self.stackedobs
def close(self):
self.venv.close()

View File

@@ -7,7 +7,7 @@ from baselines.ddpg.ddpg_learner import DDPG
from baselines.ddpg.models import Actor, Critic
from baselines.ddpg.memory import Memory
from baselines.ddpg.noise import AdaptiveParamNoiseSpec, NormalActionNoise, OrnsteinUhlenbeckActionNoise
from baselines.common import set_global_seeds
import baselines.common.tf_util as U
from baselines import logger
@@ -41,6 +41,7 @@ def learn(network, env,
param_noise_adaption_interval=50,
**network_kwargs):
set_global_seeds(seed)
if total_timesteps is not None:
assert nb_epochs is None

View File

@@ -124,16 +124,12 @@ def learn(env,
-------
env: gym.Env
environment to train on
q_func: (tf.Variable, int, str, bool) -> tf.Variable
the model that takes the following inputs:
observation_in: object
the output of observation placeholder
num_actions: int
number of actions
scope: str
reuse: bool
should be passed to outer variable scope
and returns a tensor of shape (batch_size, num_actions) with values of every action.
network: string or a function
neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
(mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
seed: int or None
prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
lr: float
learning rate for adam optimizer
total_timesteps: int
@@ -173,6 +169,8 @@ def learn(env,
to 1.0. If set to None equals to total_timesteps.
prioritized_replay_eps: float
epsilon to add to the TD errors when updating priorities.
param_noise: bool
whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
callback: (locals, globals) -> None
function called at every steps with state of the algorithm.
If callback returns true training stops.

View File

@@ -18,11 +18,11 @@ class TfInput(object):
"""Return the tf variable(s) representing the possibly postprocessed value
of placeholder(s).
"""
raise NotImplemented()
raise NotImplementedError
def make_feed_dict(data):
"""Given data input it to the placeholder(s)."""
raise NotImplemented()
raise NotImplementedError
class PlaceholderTfInput(TfInput):

View File

@@ -30,3 +30,51 @@ python -m baselines.her.experiment.train --num_cpu 19
This will require a machine with sufficient amount of physical CPU cores. In our experiments,
we used [Azure's D15v2 instances](https://docs.microsoft.com/en-us/azure/virtual-machines/linux/sizes),
which have 20 physical cores. We only scheduled the experiment on 19 of those to leave some head-room on the system.
## Hindsight Experience Replay with Demonstrations
Using pre-recorded demonstrations to Overcome the exploration problem in HER based Reinforcement learning.
For details, please read the [paper](https://arxiv.org/pdf/1709.10089.pdf).
### Getting started
The first step is to generate the demonstration dataset. This can be done in two ways, either by using a VR system to manipulate the arm using physical VR trackers or the simpler way is to write a script to carry out the respective task. Now some tasks can be complex and thus it would be difficult to write a hardcoded script for that task (eg. Fetch Push), but here our focus is on providing an algorithm that helps the agent to learn from demonstrations, and not on the demonstration generation paradigm itself. Thus the data collection part is left to the reader's choice.
We provide a script for the Fetch Pick and Place task, to generate demonstrations for the Pick and Place task execute:
```bash
python experiment/data_generation/fetch_data_generation.py
```
This outputs ```data_fetch_random_100.npz``` file which is our data file.
#### Configuration
The provided configuration is for training an agent with HER without demonstrations, we need to change a few paramters for the HER algorithm to learn through demonstrations, to do that, set:
* bc_loss: 1 - whether or not to use the behavior cloning loss as an auxilliary loss
* q_filter: 1 - whether or not a Q value filter should be used on the Actor outputs
* num_demo: 100 - number of expert demo episodes
* demo_batch_size: 128 - number of samples to be used from the demonstrations buffer, per mpi thread
* prm_loss_weight: 0.001 - Weight corresponding to the primary loss
* aux_loss_weight: 0.0078 - Weight corresponding to the auxilliary loss also called the cloning loss
Apart from these changes the reported results also have the following configurational changes:
* n_cycles: 20 - per epoch
* batch_size: 1024 - per mpi thread, total batch size
* random_eps: 0.1 - percentage of time a random action is taken
* noise_eps: 0.1 - std of gaussian noise added to not-completely-random actions
Now training an agent with pre-recorded demonstrations:
```bash
python -m baselines.her.experiment.train --env=FetchPickAndPlace-v0 --n_epochs=1000 --demo_file=/Path/to/demo_file.npz --num_cpu=1
```
This will train a DDPG+HER agent on the `FetchPickAndPlace` environment by using previously generated demonstration data.
To inspect what the agent has learned, use the play script as described above.
### Results
Training with demonstrations helps overcome the exploration problem and achieves a faster and better convergence. The following graphs contrast the difference between training with and without demonstration data, We report the mean Q values vs Epoch and the Success Rate vs Epoch:
<div class="imgcap" align="middle">
<center><img src="../../data/fetchPickAndPlaceContrast.png"></center>
<div class="thecap" align="middle"><b>Training results for Fetch Pick and Place task constrasting between training with and without demonstration data.</b></div>
</div>

View File

@@ -6,7 +6,7 @@ from tensorflow.contrib.staging import StagingArea
from baselines import logger
from baselines.her.util import (
import_function, store_args, flatten_grads, transitions_in_episode_batch)
import_function, store_args, flatten_grads, transitions_in_episode_batch, convert_episode_to_batch_major)
from baselines.her.normalizer import Normalizer
from baselines.her.replay_buffer import ReplayBuffer
from baselines.common.mpi_adam import MpiAdam
@@ -16,13 +16,17 @@ def dims_to_shapes(input_dims):
return {key: tuple([val]) if val > 0 else tuple() for key, val in input_dims.items()}
global demoBuffer #buffer for demonstrations
class DDPG(object):
@store_args
def __init__(self, input_dims, buffer_size, hidden, layers, network_class, polyak, batch_size,
Q_lr, pi_lr, norm_eps, norm_clip, max_u, action_l2, clip_obs, scope, T,
rollout_batch_size, subtract_goals, relative_goals, clip_pos_returns, clip_return,
bc_loss, q_filter, num_demo, demo_batch_size, prm_loss_weight, aux_loss_weight,
sample_transitions, gamma, reuse=False, **kwargs):
"""Implementation of DDPG that is used in combination with Hindsight Experience Replay (HER).
Added functionality to use demonstrations for training to Overcome exploration problem.
Args:
input_dims (dict of ints): dimensions for the observation (o), the goal (g), and the
@@ -50,6 +54,12 @@ class DDPG(object):
sample_transitions (function) function that samples from the replay buffer
gamma (float): gamma used for Q learning updates
reuse (boolean): whether or not the networks should be reused
bc_loss: whether or not the behavior cloning loss should be used as an auxilliary loss
q_filter: whether or not a filter on the q value update should be used when training with demonstartions
num_demo: Number of episodes in to be used in the demonstration buffer
demo_batch_size: number of samples to be used from the demonstrations buffer, per mpi thread
prm_loss_weight: Weight corresponding to the primary loss
aux_loss_weight: Weight corresponding to the auxilliary loss also called the cloning loss
"""
if self.clip_return is None:
self.clip_return = np.inf
@@ -92,6 +102,9 @@ class DDPG(object):
buffer_size = (self.buffer_size // self.rollout_batch_size) * self.rollout_batch_size
self.buffer = ReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions)
global demoBuffer
demoBuffer = ReplayBuffer(buffer_shapes, buffer_size, self.T, self.sample_transitions) #initialize the demo buffer; in the same way as the primary data buffer
def _random_action(self, n):
return np.random.uniform(low=-self.max_u, high=self.max_u, size=(n, self.dimu))
@@ -138,6 +151,57 @@ class DDPG(object):
else:
return ret
def initDemoBuffer(self, demoDataFile, update_stats=True): #function that initializes the demo buffer
demoData = np.load(demoDataFile) #load the demonstration data from data file
info_keys = [key.replace('info_', '') for key in self.input_dims.keys() if key.startswith('info_')]
info_values = [np.empty((self.T, 1, self.input_dims['info_' + key]), np.float32) for key in info_keys]
for epsd in range(self.num_demo): # we initialize the whole demo buffer at the start of the training
obs, acts, goals, achieved_goals = [], [] ,[] ,[]
i = 0
for transition in range(self.T):
obs.append([demoData['obs'][epsd ][transition].get('observation')])
acts.append([demoData['acs'][epsd][transition]])
goals.append([demoData['obs'][epsd][transition].get('desired_goal')])
achieved_goals.append([demoData['obs'][epsd][transition].get('achieved_goal')])
for idx, key in enumerate(info_keys):
info_values[idx][transition, i] = demoData['info'][epsd][transition][key]
obs.append([demoData['obs'][epsd][self.T].get('observation')])
achieved_goals.append([demoData['obs'][epsd][self.T].get('achieved_goal')])
episode = dict(o=obs,
u=acts,
g=goals,
ag=achieved_goals)
for key, value in zip(info_keys, info_values):
episode['info_{}'.format(key)] = value
episode = convert_episode_to_batch_major(episode)
global demoBuffer
demoBuffer.store_episode(episode) # create the observation dict and append them into the demonstration buffer
print("Demo buffer size currently ", demoBuffer.get_current_size()) #print out the demonstration buffer size
if update_stats:
# add transitions to normalizer to normalize the demo data as well
episode['o_2'] = episode['o'][:, 1:, :]
episode['ag_2'] = episode['ag'][:, 1:, :]
num_normalizing_transitions = transitions_in_episode_batch(episode)
transitions = self.sample_transitions(episode, num_normalizing_transitions)
o, o_2, g, ag = transitions['o'], transitions['o_2'], transitions['g'], transitions['ag']
transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g)
# No need to preprocess the o_2 and g_2 since this is only used for stats
self.o_stats.update(transitions['o'])
self.g_stats.update(transitions['g'])
self.o_stats.recompute_stats()
self.g_stats.recompute_stats()
episode.clear()
def store_episode(self, episode_batch, update_stats=True):
"""
episode_batch: array of batch_size x (T or T+1) x dim_key
@@ -185,7 +249,18 @@ class DDPG(object):
self.pi_adam.update(pi_grad, self.pi_lr)
def sample_batch(self):
transitions = self.buffer.sample(self.batch_size)
if self.bc_loss: #use demonstration buffer to sample as well if bc_loss flag is set TRUE
transitions = self.buffer.sample(self.batch_size - self.demo_batch_size)
global demoBuffer
transitionsDemo = demoBuffer.sample(self.demo_batch_size) #sample from the demo buffer
for k, values in transitionsDemo.items():
rolloutV = transitions[k].tolist()
for v in values:
rolloutV.append(v.tolist())
transitions[k] = np.array(rolloutV)
else:
transitions = self.buffer.sample(self.batch_size) #otherwise only sample from primary buffer
o, o_2, g = transitions['o'], transitions['o_2'], transitions['g']
ag, ag_2 = transitions['ag'], transitions['ag_2']
transitions['o'], transitions['g'] = self._preprocess_og(o, ag, g)
@@ -248,6 +323,9 @@ class DDPG(object):
for i, key in enumerate(self.stage_shapes.keys())])
batch_tf['r'] = tf.reshape(batch_tf['r'], [-1, 1])
#choose only the demo buffer samples
mask = np.concatenate((np.zeros(self.batch_size - self.demo_batch_size), np.ones(self.demo_batch_size)), axis = 0)
# networks
with tf.variable_scope('main') as vs:
if reuse:
@@ -270,6 +348,25 @@ class DDPG(object):
clip_range = (-self.clip_return, 0. if self.clip_pos_returns else np.inf)
target_tf = tf.clip_by_value(batch_tf['r'] + self.gamma * target_Q_pi_tf, *clip_range)
self.Q_loss_tf = tf.reduce_mean(tf.square(tf.stop_gradient(target_tf) - self.main.Q_tf))
if self.bc_loss ==1 and self.q_filter == 1 : # train with demonstrations and use bc_loss and q_filter both
maskMain = tf.reshape(tf.boolean_mask(self.main.Q_tf > self.main.Q_pi_tf, mask), [-1]) #where is the demonstrator action better than actor action according to the critic? choose those samples only
#define the cloning loss on the actor's actions only on the samples which adhere to the above masks
self.cloning_loss_tf = tf.reduce_sum(tf.square(tf.boolean_mask(tf.boolean_mask((self.main.pi_tf), mask), maskMain, axis=0) - tf.boolean_mask(tf.boolean_mask((batch_tf['u']), mask), maskMain, axis=0)))
self.pi_loss_tf = -self.prm_loss_weight * tf.reduce_mean(self.main.Q_pi_tf) #primary loss scaled by it's respective weight prm_loss_weight
self.pi_loss_tf += self.prm_loss_weight * self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u)) #L2 loss on action values scaled by the same weight prm_loss_weight
self.pi_loss_tf += self.aux_loss_weight * self.cloning_loss_tf #adding the cloning loss to the actor loss as an auxilliary loss scaled by its weight aux_loss_weight
elif self.bc_loss == 1 and self.q_filter == 0: # train with demonstrations without q_filter
self.cloning_loss_tf = tf.reduce_sum(tf.square(tf.boolean_mask((self.main.pi_tf), mask) - tf.boolean_mask((batch_tf['u']), mask)))
self.pi_loss_tf = -self.prm_loss_weight * tf.reduce_mean(self.main.Q_pi_tf)
self.pi_loss_tf += self.prm_loss_weight * self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
self.pi_loss_tf += self.aux_loss_weight * self.cloning_loss_tf
else: #If not training with demonstrations
self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf)
self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf)
self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u))
Q_grads_tf = tf.gradients(self.Q_loss_tf, self._vars('main/Q'))

View File

@@ -44,6 +44,13 @@ DEFAULT_PARAMS = {
# normalization
'norm_eps': 0.01, # epsilon used for observation normalization
'norm_clip': 5, # normalized observations are cropped to this values
'bc_loss': 0, # whether or not to use the behavior cloning loss as an auxilliary loss
'q_filter': 0, # whether or not a Q value filter should be used on the Actor outputs
'num_demo': 100, # number of expert demo episodes
'demo_batch_size': 128, #number of samples to be used from the demonstrations buffer, per mpi thread 128/1024 or 32/256
'prm_loss_weight': 0.001, #Weight corresponding to the primary loss
'aux_loss_weight': 0.0078, #Weight corresponding to the auxilliary loss also called the cloning loss
}
@@ -145,6 +152,12 @@ def configure_ddpg(dims, params, reuse=False, use_mpi=True, clip_return=True):
'subtract_goals': simple_goal_subtract,
'sample_transitions': sample_her_transitions,
'gamma': gamma,
'bc_loss': params['bc_loss'],
'q_filter': params['q_filter'],
'num_demo': params['num_demo'],
'demo_batch_size': params['demo_batch_size'],
'prm_loss_weight': params['prm_loss_weight'],
'aux_loss_weight': params['aux_loss_weight'],
})
ddpg_params['info'] = {
'env_name': params['env_name'],

View File

@@ -0,0 +1,149 @@
import gym
import time
import random
import numpy as np
import rospy
import roslaunch
from random import randint
from std_srvs.srv import Empty
from sensor_msgs.msg import JointState
from geometry_msgs.msg import PoseStamped
from geometry_msgs.msg import Pose
from std_msgs.msg import Float64
from controller_manager_msgs.srv import SwitchController
from gym.utils import seeding
"""Data generation for the case of a single block pick and place in Fetch Env"""
actions = []
observations = []
infos = []
def main():
env = gym.make('FetchPickAndPlace-v0')
numItr = 100
initStateSpace = "random"
env.reset()
print("Reset!")
while len(actions) < numItr:
obs = env.reset()
print("ITERATION NUMBER ", len(actions))
goToGoal(env, obs)
fileName = "data_fetch"
fileName += "_" + initStateSpace
fileName += "_" + str(numItr)
fileName += ".npz"
np.savez_compressed(fileName, acs=actions, obs=observations, info=infos) # save the file
def goToGoal(env, lastObs):
goal = lastObs['desired_goal']
objectPos = lastObs['observation'][3:6]
gripperPos = lastObs['observation'][:3]
gripperState = lastObs['observation'][9:11]
object_rel_pos = lastObs['observation'][6:9]
episodeAcs = []
episodeObs = []
episodeInfo = []
object_oriented_goal = object_rel_pos.copy()
object_oriented_goal[2] += 0.03 # first make the gripper go slightly above the object
timeStep = 0 #count the total number of timesteps
episodeObs.append(lastObs)
while np.linalg.norm(object_oriented_goal) >= 0.005 and timeStep <= env._max_episode_steps:
env.render()
action = [0, 0, 0, 0]
object_oriented_goal = object_rel_pos.copy()
object_oriented_goal[2] += 0.03
for i in range(len(object_oriented_goal)):
action[i] = object_oriented_goal[i]*6
action[len(action)-1] = 0.05 #open
obsDataNew, reward, done, info = env.step(action)
timeStep += 1
episodeAcs.append(action)
episodeInfo.append(info)
episodeObs.append(obsDataNew)
objectPos = obsDataNew['observation'][3:6]
gripperPos = obsDataNew['observation'][:3]
gripperState = obsDataNew['observation'][9:11]
object_rel_pos = obsDataNew['observation'][6:9]
while np.linalg.norm(object_rel_pos) >= 0.005 and timeStep <= env._max_episode_steps :
env.render()
action = [0, 0, 0, 0]
for i in range(len(object_rel_pos)):
action[i] = object_rel_pos[i]*6
action[len(action)-1] = -0.005
obsDataNew, reward, done, info = env.step(action)
timeStep += 1
episodeAcs.append(action)
episodeInfo.append(info)
episodeObs.append(obsDataNew)
objectPos = obsDataNew['observation'][3:6]
gripperPos = obsDataNew['observation'][:3]
gripperState = obsDataNew['observation'][9:11]
object_rel_pos = obsDataNew['observation'][6:9]
while np.linalg.norm(goal - objectPos) >= 0.01 and timeStep <= env._max_episode_steps :
env.render()
action = [0, 0, 0, 0]
for i in range(len(goal - objectPos)):
action[i] = (goal - objectPos)[i]*6
action[len(action)-1] = -0.005
obsDataNew, reward, done, info = env.step(action)
timeStep += 1
episodeAcs.append(action)
episodeInfo.append(info)
episodeObs.append(obsDataNew)
objectPos = obsDataNew['observation'][3:6]
gripperPos = obsDataNew['observation'][:3]
gripperState = obsDataNew['observation'][9:11]
object_rel_pos = obsDataNew['observation'][6:9]
while True: #limit the number of timesteps in the episode to a fixed duration
env.render()
action = [0, 0, 0, 0]
action[len(action)-1] = -0.005 # keep the gripper closed
obsDataNew, reward, done, info = env.step(action)
timeStep += 1
episodeAcs.append(action)
episodeInfo.append(info)
episodeObs.append(obsDataNew)
objectPos = obsDataNew['observation'][3:6]
gripperPos = obsDataNew['observation'][:3]
gripperState = obsDataNew['observation'][9:11]
object_rel_pos = obsDataNew['observation'][6:9]
if timeStep >= env._max_episode_steps: break
actions.append(episodeAcs)
observations.append(episodeObs)
infos.append(episodeInfo)
if __name__ == "__main__":
main()

View File

@@ -26,7 +26,7 @@ def mpi_average(value):
def train(policy, rollout_worker, evaluator,
n_epochs, n_test_rollouts, n_cycles, n_batches, policy_save_interval,
save_policies, **kwargs):
save_policies, demo_file, **kwargs):
rank = MPI.COMM_WORLD.Get_rank()
latest_policy_path = os.path.join(logger.get_dir(), 'policy_latest.pkl')
@@ -35,6 +35,8 @@ def train(policy, rollout_worker, evaluator,
logger.info("Training...")
best_success_rate = -1
if policy.bc_loss == 1: policy.initDemoBuffer(demo_file) #initialize demo buffer if training with demonstrations
for epoch in range(n_epochs):
# train
rollout_worker.clear_history()
@@ -84,7 +86,7 @@ def train(policy, rollout_worker, evaluator,
def launch(
env, logdir, n_epochs, num_cpu, seed, replay_strategy, policy_save_interval, clip_return,
override_params={}, save_policies=True
demo_file, override_params={}, save_policies=True
):
# Fork for multi-CPU MPI implementation.
if num_cpu > 1:
@@ -171,7 +173,7 @@ def launch(
logdir=logdir, policy=policy, rollout_worker=rollout_worker,
evaluator=evaluator, n_epochs=n_epochs, n_test_rollouts=params['n_test_rollouts'],
n_cycles=params['n_cycles'], n_batches=params['n_batches'],
policy_save_interval=policy_save_interval, save_policies=save_policies)
policy_save_interval=policy_save_interval, save_policies=save_policies, demo_file=demo_file)
@click.command()
@@ -183,6 +185,7 @@ def launch(
@click.option('--policy_save_interval', type=int, default=5, help='the interval with which policy pickles are saved. If set to 0, only the best and latest policy will be pickled.')
@click.option('--replay_strategy', type=click.Choice(['future', 'none']), default='future', help='the HER replay strategy to be used. "future" uses HER, "none" disables HER.')
@click.option('--clip_return', type=int, default=1, help='whether or not returns should be clipped')
@click.option('--demo_file', type=str, default = 'PATH/TO/DEMO/DATA/FILE.npz', help='demo data file path')
def main(**kwargs):
launch(**kwargs)

View File

@@ -106,7 +106,8 @@ class CSVOutputFormat(KVWriter):
def writekvs(self, kvs):
# Add our current row to the history
extra_keys = kvs.keys() - self.keys
extra_keys = list(kvs.keys() - self.keys)
extra_keys.sort()
if extra_keys:
self.keys.extend(extra_keys)
self.file.seek(0)

View File

@@ -7,13 +7,12 @@ import tensorflow as tf
import numpy as np
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.common.cmd_util import common_arg_parser, parse_unknown_args, make_vec_env
from baselines.common.cmd_util import common_arg_parser, parse_unknown_args, make_vec_env, make_env
from baselines.common.tf_util import get_session
from baselines import bench, logger
from baselines import logger
from importlib import import_module
from baselines.common.vec_env.vec_normalize import VecNormalize
from baselines.common import atari_wrappers, retro_wrappers
try:
from mpi4py import MPI
@@ -87,38 +86,19 @@ def build_env(args):
if sys.platform == 'darwin': ncpu //= 2
nenv = args.num_env or ncpu
alg = args.alg
rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
seed = args.seed
env_type, env_id = get_env_type(args.env)
if env_type == 'atari':
if alg == 'acer':
env = make_vec_env(env_id, env_type, nenv, seed)
elif alg == 'deepq':
env = atari_wrappers.make_atari(env_id)
env.seed(seed)
env = bench.Monitor(env, logger.get_dir())
env = atari_wrappers.wrap_deepmind(env, frame_stack=True)
if env_type in {'atari', 'retro'}:
if alg == 'deepq':
env = make_env(env_id, env_type, seed=seed, wrapper_kwargs={'frame_stack': True})
elif alg == 'trpo_mpi':
env = atari_wrappers.make_atari(env_id)
env.seed(seed)
env = bench.Monitor(env, logger.get_dir() and osp.join(logger.get_dir(), str(rank)))
env = atari_wrappers.wrap_deepmind(env)
# TODO check if the second seeding is necessary, and eventually remove
env.seed(seed)
env = make_env(env_id, env_type, seed=seed)
else:
frame_stack_size = 4
env = VecFrameStack(make_vec_env(env_id, env_type, nenv, seed), frame_stack_size)
elif env_type == 'retro':
import retro
gamestate = args.gamestate or retro.State.DEFAULT
env = retro_wrappers.make_retro(game=args.env, state=gamestate, max_episode_steps=10000,
use_restricted_actions=retro.Actions.DISCRETE)
env.seed(args.seed)
env = bench.Monitor(env, logger.get_dir())
env = retro_wrappers.wrap_deepmind_retro(env)
env = make_vec_env(env_id, env_type, nenv, seed, gamestate=args.gamestate, reward_scale=args.reward_scale)
env = VecFrameStack(env, frame_stack_size)
else:
config = tf.ConfigProto(allow_soft_placement=True,
@@ -151,7 +131,7 @@ def get_env_type(env_id):
def get_default_network(env_type):
if env_type == 'atari':
if env_type in {'atari', 'retro'}:
return 'cnn'
else:
return 'mlp'

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

View File

@@ -50,9 +50,13 @@ setup(name='baselines',
# ensure there is some tensorflow build with version above 1.4
try:
from distutils.version import StrictVersion
import tensorflow
assert StrictVersion(re.sub(r'-rc\d+$', '', tensorflow.__version__)) >= StrictVersion('1.4.0')
except ImportError:
assert False, "TensorFlow needed, of version above 1.4"
import pkg_resources
tf_pkg = None
for tf_pkg_name in ['tensorflow', 'tensorflow-gpu']:
try:
tf_pkg = pkg_resources.get_distribution(tf_pkg_name)
except pkg_resources.DistributionNotFound:
pass
assert tf_pkg is not None, 'TensorFlow needed, of version above 1.4'
from distutils.version import StrictVersion
assert StrictVersion(re.sub(r'-?rc\d+$', '', tf_pkg.version)) >= StrictVersion('1.4.0')