Compare commits

...

106 Commits

Author SHA1 Message Date
Peter Zhokhov
1ab9fae0b5 test fixes 2019-05-03 16:36:03 -07:00
Peter Zhokhov
75200671c4 fix tests - add matplotlib to setup_requires, put mpi4py import in try-except 2019-05-03 16:29:10 -07:00
Peter Zhokhov
46fa1b6453 merge master 2019-05-03 15:57:31 -07:00
Peter Zhokhov
a1a9bd6174 Merge branch 'internal' of github.com:openai/baselines into internal 2019-05-03 15:56:04 -07:00
John Schulman
ef7ac116cb (onp, np) -> (np, jp), switch jax code to use mark_slow decorator (#363)
switch to mark_slow decorator
2019-05-03 15:54:27 -07:00
pzhokhov
1fa6ac38f1 JRL PPO test with delayed identity env (#355)
* add a custom delay to identity_env

* min reward 0.8 in delayed identity test

* seed the tests, perfect score on delayed_identity_test

* delay=1 in delayed_identity_test

* flake8 complaints

* increased number of steps in fixed_seq_test

* seed identity tests to ensure reproducibility

* docstrings
2019-05-03 15:54:26 -07:00
Karl Cobbe
07536451ee Procgen fixes (#352)
* tweak

* documentation

* rely on log_comm, remove mpi averaging from wrappers

* pass comm for ppo2 initialization

* ppo2 logging

* experiment tweaks

* auto launch tensorboard when using local backend

* graph tweaks

* pass caller to config

* configure logger and tensorboard

* make parent dir if necessary

* parentdir tweak
2019-05-03 15:54:26 -07:00
Greg Brockman
64dfabb8eb Add initializer for process-level setup in SubprocVecEnv (#276)
* Add initializer for process-level setup in SubprocVecEnv

Use case: run logger.configure() in each subprocess

* Add option to force dummy vec env
2019-05-03 15:54:26 -07:00
John Schulman
f5daca8c22 delete unnecessary stuff (#338) 2019-05-03 15:54:25 -07:00
pzhokhov
8e0282ee94 ci/runtests.sh - pass all folders to pytest (#342)
* ci/runtests.sh - pass all folders to pytest

* mpi_optimizer_test precision 1e-4

* fixes to tests

* search for tests in the entire jax folder, also remove unnecessary humor
2019-05-03 15:54:25 -07:00
Karl Cobbe
ddcab1606d Procgen Benchmark Updates (#328)
* directory cleanup

* logging, num_experiments

* fixes

* cleanup

* gin fixes

* fix local max gpu

* resid nx

* tweak

* num machines and download params

* rename

* cleanup

* create workbench

* more reorg

* fix

* more logging wrappers

* lint fix

* restore train procgen

* restore train procgen

* pylint fix

* better wrapping

* whackamole walls

* config sweep

* tweak

* args sweep

* tweak

* test workers

* mpi_weight

* train test comm and high difficulty fix

* enjoy show returns

* better joint training

* tweak

* Add —update to args and add gin-config to requirements.txt

* add username to download_file

* removing gin, procgen_parser

* removing gin

* procgen args

* config fixes

* cleanup

* cleanup

* procgen args fix

* fix

* rcall syncing

* lint

* rename mpi_weight

* begin composable game

* more composable game

* tweak

* background alpha

* use username for sync

* fixes

* microbatch fix

* lure composable game

* merge

* proc trans update

* proc trans update (#307)

* finetuning experiment

* Change is_local to use `use_rcall` and fix error of `enjoy.py` with multiple ends

* graphing help

* add --local

* change args_dict['env_name'] to ENV_NAME

* finetune experiments

* tweak

* tweak

* reorg wrappers, remove is_local

* workdir/local fixes

* move finetune experiments

* default dir and graphing

* more graphing

* fix

* pooled syncing

* tweaks

* dir fix

* tweak

* wrapper mpi fix

* wind and turrets

* composability cleanup

* radius cleanup

* composable reorg

* laser gates

* composable tweaks

* soft walls

* tweak

* begin swamp

* more swamp

* more swamp

* fix

* hidden mines

* use maze layout

* tweak

* laser gate tweaks

* tweaks

* tweaks

* lure/propel updates

* composable midnight

* composable coinmaze

* composability difficulty

* tweak

* add step to save_params

* composable offsets

* composable boxpush

* composable combiner

* tweak

* tweak

* always choose correct number of mechanics

* fix

* rcall local fix

* add steps when dump and save parmas

* loading rank 1,2,3.. error fix

* add experiments.py

* fix loading latest weight with no -rest

* support more complex run_id and add more examples

* fix typo

* move post_run_id into experiments.py

* add hp_search example

* error fix

* joint experiments in progress

* joint hp finished

* typo

* error fix

* edit experiments

* Save experiments set up in code and  save weights per step (#319)

* add step to save_params

* add steps when dump and save parmas

* loading rank 1,2,3.. error fix

* add experiments.py

* fix loading latest weight with no -rest

* support more complex run_id and add more examples

* fix typo

* move post_run_id into experiments.py

* add hp_search example

* error fix

* joint experiments in progress

* joint hp finished

* typo

* error fix

* edit experiments

* tweaks

* graph exp WIP

* depth tweaks

* move save_all

* fix

* restore_dir name

* restore depth

* choose max mechanics

* use override mode

* tweak frogger

* lstm default

* fix

* patience is composable

* hunter is composable

* fixed asset seed cleanup

* minesweeper is composable

* eggcatch is composable

* tweak

* applesort is composable

* chaser game

* begin lighter

* lighter game

* tractor game

* boxgather game

* plumber game

* hitcher game

* doorbell game

* lawnmower game

* connecter game

* cannonaim

* outrun game

* encircle game

* spinner game

* tweak

* tweak

* detonator game

* driller

* driller

* mixer

* conveyor

* conveyor game

* joint pcg experiments

* fixes

* pcg sweep experiment

* cannonaim fix

* combiner fix

* store save time

* laseraim fix

* lightup fix

* detonator tweaks

* detonator fixes

* driller fix

* lawnmower calibration

* spinner calibration

* propel fix

* train experiment

* print load time

* system independent hashing

* remove gin configurable

* task ids fix

* test_pcg experiment

* connecter dense reward

* hard_pcg

* num train comms

* mpi splits envs

* tweaks

* tweaks

* graph tweaks

* graph tweaks

* lint fix

* fix tests

* load bugfix

* difficulty timeout tweak

* tweaks

* more graphing

* graph tweaks

* tweak

* download file fix

* pcg train envs list

* cleanup

* tweak

* manually name impala layers

* tweak

* expect fps

* backend arg

* args tweak

* workbench cleanup

* move graph files

* workbench cleanup

* split env name by comma

* workbench cleanup

* ema graph

* remove Dict

* use tf.io.gfile

* comments for auto-killing jobs

* lint fix

* write latest file when not saving all and load it when step=None
2019-05-03 15:54:24 -07:00
Christopher Hesse
bc4eef6053 fix tests (#335) 2019-05-03 15:54:24 -07:00
John Schulman
967fc8c37f Fixed sequence env minor (#333)
minor changes to FixedSequenceEnv to allow full score
2019-05-03 15:54:24 -07:00
pzhokhov
a93dde3b2b extra functionality in baselines.common.plot_util (#310)
* get plot_util from mt_experiments branch

* add labels

* unit tests for plot_util
2019-05-03 15:54:23 -07:00
John Schulman
b83a66527d Add jrl19 as backend for workbench (#324)
enable jrl in workbench
minor logger changes
2019-05-03 15:54:23 -07:00
John Schulman
07cbf1e26a Grad clipping in MpiAdamOptimizer, transformer changes (#304)
* transformer mnist experiments

* version that only builds one model

* work on inverted mnist

* Add grad clipping to MpiAdamOptimizer

* various

* transformer changes, loading

* get rid of soft labels

* transformer baseline

* minor

* experiments involving all possible training sets

* vary training

* minor

* get ready for fine-tuning expers

* lint

* minor
2019-05-03 15:54:23 -07:00
Karl Cobbe
5082e5d34b Workbench (#303)
* begin workbench

* cleanup

* begin procgen config integration

* arg tweaks

* more args

* parameter saving

* begin procgen enjoy

* tweaks

* more workbench

* more args sync/restore

* cleanup

* merge in master

* rework args priority

* more workbench

* more loggign

* impala cnn

* impala lstm

* tweak

* tweaks

* rl19 time logging

* misc fixes

* faster pipeline

* update local.py

* sess and log config tweaks

* num processes

* logging tweaks

* difficulty reward wrapper

* logging fixes

* gin tweaks

* tweak

* fix

* task id

* param loading

* more variable loading

* entrypoint

* tweak

* ksync

* restore lstm

* begin rl19 support

* tweak

* rl19 rnn

* more rl19 integration

* fix

* cleanup

* restore rl19 rnn

* cleanup

* cleanup

* wrappers.get_log_info

* cleanup

* cleanup

* directory cleanup

* logging, num_experiments

* fixes

* cleanup

* gin fixes

* fix local max gpu

* resid nx

* num machines and download params

* rename

* cleanup

* create workbench

* more reorg

* fix

* more logging wrappers

* lint fix

* restore train procgen

* restore train procgen

* pylint fix

* better wrapping

* config sweep

* args sweep

* test workers

* mpi_weight

* train test comm and high difficulty fix

* enjoy show returns

* removing gin, procgen_parser

* removing gin

* procgen args

* config fixes

* cleanup

* cleanup

* procgen args fix

* fix

* rcall syncing

* lint

* rename mpi_weight

* use username for sync

* fixes

* microbatch fix
2019-05-03 15:54:22 -07:00
Christopher Hesse
376fd88bb8 fix vec monitor infos 2019-05-03 15:54:22 -07:00
pzhokhov
3301089b48 remove bullet extra, constrain gym version to be >= 0.10.0 (#885)
* remove bullet extra, constrain gym version to be >= 0.10.0

* constrain gym version from above
2019-04-26 16:14:49 -07:00
pzhokhov
a07fad9066 change rms 2 tfrms switch in vec_normalize to be more explicit (#886)
* change rms 2 tfrms switch in vec_normalize to be more explicit

* modify the vec_normalize / use_tf logic a little bit

* typo

* use_tf = False by default
2019-04-26 16:14:21 -07:00
Taeyeong Jeong
5d8041d18e Fix indexing LazyFrames (#875)
Indexing LazyFrames with index i should return the single channel frame
2019-04-19 15:00:09 -07:00
Peter Zhokhov
fa37beb52e fix commit on atari bms page to point to a public commit 2019-04-06 20:03:32 -07:00
Peter Zhokhov
8a97e0df10 fix shuffling bug in ppo1 2019-04-05 15:23:46 -07:00
pzhokhov
fabbf2c611 short-circuit framestack wrapper with size 1 (#871) 2019-04-05 15:18:15 -07:00
Xingdong Zuo
5d285b318f [Update misc_util.py]: clean up unused helper functions (#751)
* Update misc_util.py

* Update misc_util.py
2019-04-05 15:16:26 -07:00
Tim Zaman
49a99c7d23 Add eps to normalization (#797) 2019-04-05 14:46:01 -07:00
Peter Zhokhov
c79b3373bf parse colon-separated env_id's 2019-04-05 14:43:09 -07:00
Peter Zhokhov
96b6a31848 Merge branch 'internal' of github.com:openai/baselines into internal 2019-04-05 14:11:09 -07:00
Jacob Hilton
0a48a1fda9 Merge branch 'master' of github.com:openai/baselines into internal 2019-04-03 16:21:48 -07:00
Christopher Hesse
ea20c8a034 add score calculator wrapper, forward property lookups on vecenv wrap… (#300)
* add score calculator wrapper, forward property lookups on vecenv wrapper, misc cleanup

* tests

* pylint
2019-04-03 16:20:42 -07:00
pzhokhov
a08af5d07d make tests use single-threaded session for determinism of KfacOptimizer (#298)
* make tests use single-threaded session for determinism of KfacOptimizer

* updated comment in kfac.py

* remove unused sess_config
2019-04-03 16:20:42 -07:00
Oleg Klimov
cc88c8e4c0 remove tensorflow dependency from VecEnv 2019-04-03 16:20:42 -07:00
pzhokhov
f2654082b2 Symshapes - gives codegen ability to evaluate same algo on envs with different ob/ac shapes (#262)
* finish cherry-pick td3 test commit

* removed graph simplification error ingore

* merge delayed logger config

* merge updated baselines logger

* lazy_mpi load

* cleanups

* use lazy mpi imports in codegen

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* removed extra printouts from TdLayer op

* silly recursion

* running codegen cc experiment

* wip

* more wip

* use actor is input for critic targets, instead of the action taken

* batch size 100

* tweak update parameters

* tweaking td3 runs

* wip

* use nenvs=2 for contcontrol (to be comparable with ppo_metal)

* wip. Doubts about usefulness of actor in critic target

* delayed actor in ActorLoss

* score is average of last 100

* skip lack of losses or too many action distributions

* 16 envs for contcontrol, replay buffer size equal to horizon (no point in making it longer)

* syntax

* microfixes

* minifixes

* run in process logic to bypass tensorflow freezes/failures (per Oleg's suggestion)

* random physics for mujoco

* random parts sizes with range 0.4

* add notebook with results into x/peterz

* variations of ant

* roboschool use gym.make kwargs

* use float as lowest score after rank transform

* rcall from master

* wip

* re-enable dynamic routing

* wip

* squash-merge master, resolve conflicts

* remove erroneous file

* restore normal MPI imports

* move wrappers around a little bit

* autopep8

* cleanups

* cleanup mpi_eda, autopep8

* make activation function of action distribution customizable

* cleanups; preparation for a pr

* syntax

* merge latest master, resolve conflicts

* wrap MPI import with try/except

* allow import of modules through env id im baselines cmd_util

* flake8 complaints

* only wrap box action spaces with ClipActionsWrapper

* flake8

* fixes to algo_prob according to Oleg's suggestions

* use apply_without_scope flag in ActorLoss

* remove extra line in algo/core.py

* multi-task support

* autopep8

* symbolic suffix-shapes (not B,T yet)

* test_with_mpi -> with_mpi rename

* remove extra blank lines in algo/core

* remove extra blank lines in algo/core

* remove more blank lines

* symbolify shapes in existing algorithms

* minor output changes

* cleaning up merge conflicts

* cleaning up merge conflicts

* cleaning up more merge conflicts

* restore mpi_map.py from master
2019-04-03 16:20:42 -07:00
Karl Cobbe
dadc2c2eb6 Rl19 metalearning (#261)
* rl19 metalearning and dict obs

* master merge arch fix

* lint fixes

* view fixes

* load vars tweaks

* user config cleanup

* documentation and revisions

* pass train comm to rl19

* cleanup
2019-04-03 16:20:42 -07:00
pzhokhov
d9702e7ccb codegen continuous control experiment pr (#256)
* finish cherry-pick td3 test commit

* removed graph simplification error ingore

* merge delayed logger config

* merge updated baselines logger

* lazy_mpi load

* cleanups

* use lazy mpi imports in codegen

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* removed extra printouts from TdLayer op

* silly recursion

* running codegen cc experiment

* wip

* more wip

* use actor is input for critic targets, instead of the action taken

* batch size 100

* tweak update parameters

* tweaking td3 runs

* wip

* use nenvs=2 for contcontrol (to be comparable with ppo_metal)

* wip. Doubts about usefulness of actor in critic target

* delayed actor in ActorLoss

* score is average of last 100

* skip lack of losses or too many action distributions

* 16 envs for contcontrol, replay buffer size equal to horizon (no point in making it longer)

* syntax

* microfixes

* minifixes

* run in process logic to bypass tensorflow freezes/failures (per Oleg's suggestion)

* squash-merge master, resolve conflicts

* remove erroneous file

* restore normal MPI imports

* move wrappers around a little bit

* autopep8

* cleanups

* cleanup mpi_eda, autopep8

* make activation function of action distribution customizable

* cleanups; preparation for a pr

* syntax

* merge latest master, resolve conflicts

* wrap MPI import with try/except

* allow import of modules through env id im baselines cmd_util

* flake8 complaints

* only wrap box action spaces with ClipActionsWrapper

* flake8

* fixes to algo_prob according to Oleg's suggestions

* use apply_without_scope flag in ActorLoss

* remove extra line in algo/core.py
2019-04-03 16:20:42 -07:00
Christopher Hesse
f641810ef9 update dmlab30 env (#258) 2019-04-03 16:20:42 -07:00
Peter Zhokhov
3265098cc6 Merge branch 'master' of github.com:openai/baselines into internal 2019-04-01 16:26:25 -07:00
Sridhar Thiagarajan
6d1c6c78d3 Interface for U.make_session changed (#865) 2019-04-01 16:24:02 -07:00
JongGyun Kim
62a9c76f18 fix the definition of TfInput.make_feed_dict. (#812) 2019-04-01 15:49:25 -07:00
Hao-Chih, Lin
282c9cc91f fix small bug in plot_results() (#864)
Remove the comma behind the last input argument
2019-04-01 15:48:35 -07:00
Peter Zhokhov
096f4d9cf0 neaten up stacking logic in mujoco_dset in gail 2019-04-01 15:47:13 -07:00
Mingfei
16136ddca7 fix bugs: obs_ph normalization in adversary.py (#823)
* fix bugs: obs_ph normalization in adversary.py

* fix bug in reshape obs and acs in Mujobo_Dset
2019-04-01 15:44:31 -07:00
Darío Hereñú
b1644157d6 Fixed typo on #092 (#824) 2019-04-01 15:41:52 -07:00
Yu Feng
58541db226 MPI refer to workers as ranks, not threads. (#833) 2019-04-01 15:38:45 -07:00
zlsh80826
c02b575f01 ppo2: use time.perf_counter() instead of time.time() for time measurement (#847) 2019-04-01 15:37:32 -07:00
Pastafarianist
897fa31548 Avoid using default config while requesting available GPUs (#863) 2019-03-29 13:25:56 -07:00
Brett Daley
d51f8be8f9 Report episode rewards/length in A2C and ACKTR (#856) 2019-03-28 09:21:48 -07:00
Jacob Hilton
3f2f45acef Merge pull request #860 from openai/build-retro-env-framestack-fix
run.py framestack bug fix
2019-03-25 14:33:15 -07:00
Jacob Hilton
b64974eb90 build_env now doesn't apply frame stack to retro games twice 2019-03-24 12:27:14 -07:00
pzhokhov
1b092434fc remove f-strings for python 3.5 compatibility (#854) 2019-03-16 11:54:47 -07:00
Peter Zhokhov
1259f6ab25 check for environment being vectorized in the play logic in run.py 2019-03-11 17:44:03 -07:00
Peter Zhokhov
5bc6f53960 merged master 2019-03-11 17:31:03 -07:00
pzhokhov
74101a9f24 fix freeze of ppo2 (#849)
* fix freeze of ppo2

* unit test for freeze, updated docstring

* more docstring update

* set number of threads to 1 in the test
2019-03-11 17:28:51 -07:00
JongGyun Kim
90d66776a4 remove one of duplicated lines. (#813) 2019-03-06 15:13:01 -08:00
pzhokhov
b875fb7b5e release Internal changes (#800)
* joshim5 changes (width and height to WarpFrame wrapper)

* match network output with action distribution via a linear layer only if necessary (#167)

* support color vs. grayscale option in WarpFrame wrapper (#166)

* support color vs. grayscale option in WarpFrame wrapper

* Support color in other wrappers

* Updated per Peters suggestions

* fixing test failures

* ppo2 with microbatches (#168)

* pass microbatch_size to the model during construction

* microbatch fixes and test (#169)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* Peterz joshim5 subclass ppo2 model (#170)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* subclassing the model to make microbatched version of model WIP

* made microbatched model a subclass of ppo2 Model

* flake8 complaint

* mpi-less ppo2 (resolving merge conflict)

* flake8 and mpi4py imports in ppo2/model.py

* more un-mpying

* merge master

* updates to the benchmark viewer code + autopep8 (#184)

* viz docs and syntactic sugar wip

* update viewer yaml to use persistent volume claims

* move plot_util to baselines.common, update links

* use 1Tb hard drive for results viewer

* small updates to benchmark vizualizer code

* autopep8

* autopep8

* any folder can be a benchmark

* massage games image a little bit

* fixed --preload option in app.py

* remove preload from run_viewer.sh

* remove pdb breakpoints

* update bench-viewer.yaml

* fixed bug (#185)

* fixed bug 

it's wrong to do the else statement, because no other nodes would start.

* changed the fix slightly

* Refactor her phase 1 (#194)

* add monitor to the rollout envs in her RUN BENCHMARKS her

* Slice -> Slide in her benchmarks RUN BENCHMARKS her

* run her benchmark for 200 epochs

* dummy commit to RUN BENCHMARKS her

* her benchmark for 500 epochs RUN BENCHMARKS her

* add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her

* add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her

* add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her

* disable saving of policies in her benchmark RUN BENCHMARKS her

* run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch

* run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch

* launcher refactor wip

* wip

* her works on FetchReach

* her runner refactor RUN BENCHMARKS Fetch1M

* unit test for her

* fixing warnings in mpi_average in her, skip test_fetchreach if mujoco is not present

* pickle-based serialization in her

* remove extra import from subproc_vec_env.py

* investigating differences in rollout.py

* try with old rollout code RUN BENCHMARKS her

* temporarily use DummyVecEnv in cmd_util.py RUN BENCHMARKS her

* dummy commit to RUN BENCHMARKS her

* set info_values in rollout worker in her RUN BENCHMARKS her

* bug in rollout_new.py RUN BENCHMARKS her

* fixed bug in rollout_new.py RUN BENCHMARKS her

* do not use last step because vecenv calls reset and returns obs after reset RUN BENCHMARKS her

* updated buffer sizes RUN BENCHMARKS her

* fixed loading/saving via joblib

* dust off learning from demonstrations in HER, docs, refactor

* add deprecation notice on her play and plot files

* address comments by Matthias

* 1.5 months of codegen changes (#196)

* play with resnet

* feed_dict version

* coinrun prob and more stats

* fixes to get_choices_specs & hp search

* minor prob fixes

* minor fixes

* minor

* alternative version of rl_algo stuff

* pylint fixes

* fix bugs, move node_filters to soup

* changed how get_algo works

* change how get_algo works, probably broke all tests

* continue previous refactor

* get eval_agent running again

* fixing tests

* fix tests

* fix more tests

* clean up cma stuff

* fix experiment

* minor changes to eval_agent to make ppo_metal use gpu

* make dict space work

* modify mac makefile to use conda

* recurrent layers

* play with bn and resnets

* minor hp changes

* minor

* got rid of use_fb argument and jtft (joint-train-fine-tune) functionality
built test phase directly into AlgoProb

* make new rl algos generateable

* pylint; start fixing tests

* fixing tests

* more test fixes

* pylint

* fix search

* work on search

* hack around infinite loop caused by scan

* algo search fixes

* misc changes for search expt

* enable annealing, overriding options of Op

* pylint fixes

* identity op

* achieve use_last_output through masking so it automatically works in other distributions

* fix tests

* minor

* discrete

* use_last_output to be just a preference, not a hard constraint

* pred delay, pruning

* require nontrivial inputs

* aliases for get_sm

* add probname to probs

* fixes

* small fixes

* fix tests

* fix tests

* fix tests

* minor

* test scripts

* dualgru network improvements

* minor

* work on mysterious bugs

* rcall gpu-usage command for kube

* use cache dir that’s not in code folder, so that it doesn’t get removed by rcall code rsync

* add power mode to gpu usage

* make sure train/test actually different

* remove VR for now

* minor fixes

* simplify soln_db

* minor

* big refactor of mpi eda

* improve mpieda for multitask

* - get rid of timelimit hack
- add __del__ to cleanup SubprocVecEnv

* get multitask working better

* fixes

* working on atari, various

* annotate ops with whether they’re parametrized

* minor

* gym version

* rand atari prob

* minor

* SolnDb bugfix and name change

* pyspy script

* switch conv layers

* fix roboschool/bullet3

* nenvs assertion

* fix rand atari

* get rid of blanket exception catching
fix soln_db bug

* fix rand_atari

* dynamic routing as cmdline arg

* slight modifications to test_mpi_map and pyspy-all

* max_tries argument for run_until_successs

* dedup option in train_mle

* simplify soln_db

* increase atari horizon for 1 experiment

* start implementing reward increment

* ent multiplier

* create cc dsl
other misc fixes

* cc ops

* q_func -> qs in rl_algos_cc.py

* fix PredictDistr

* rl_ops_cc fixes, MakeAction op

* augment algo agent to support cc stuff

* work on ddpg experiments

* fix blocking
temporarily change logger

* allow layer scaling

* pylint fixes

* spawn_method

* isolate ddpg hacks

* improve pruning

* use spawn for subproc

* remove use of python -c in rcall

* fix pylint warning

* fix static

* maybe fix local backend

* switch to DummyVecEnv

* making some fixes via pylint

* pylint fixes

* fixing tests

* fix tests

* fix tests

* write scaffolding for SSL in Codegen

* logger fix

* fix error

* add EMA op to sl_ops

* save many changes

* save

* add upsampler

* add sl ops, enhance state machine

* get ssl search working — some gross hacking

* fix session/graph issue

* fix importing

* work on mle

* - scale embeddings in gru model
- better exception handling in sl_prob
- use emas for test/val
- use non-contrib batch_norm layer

* improve logging

* option to average before dumping in logger

* default arguments, etc

* new ddpg and identity test

* concat fix

* minor

* move realistic ssl stuff to third-party (underscore to dash)

* fixes

* remove realistic_ssl_evaluation

* pylint fixes

* use gym master

* try again

* pass around args without gin

* fix tests

* separate line to install gym

* rename failing tests that should be ignored

* add data aug

* ssl improvements

* use fixed time limit

* try to fix baselines tests

* add score_floor, max_walltime, fiddle with lr decay

* realistic_ssl

* autopep8

* various ssl
- enable blocking grad for simplification
- kl
- multiple final prediction

* fix pruning

* misc ssl stuff

* bring back linear schedule, don’t use allgather for collecting stats
(i’ve been getting nondeterministic errors from the old code)

* save/load weights in SSL, big stepsize

* cleanup SslProb

* fix

* get rid of kl coef

* fix simplification, lower lr

* search over hps

* minor fixes

* minor

* static analysis

* move files and rename things for improved consistency.
still broken, and just saving before making nontrivial changes

* various

* make tests pass

* move coinrun_train to codegen since it depends on codegen

* fixes

* pylint fixes

* improve tests
fix some things

* improve tests

* lint

* fix up db_info.py, tests

* mostly restore master version of envs directory, except for makefile changes

* fix tests

* improve printing

* minor fixes

* fix fixmes

* pruning test

* fixes

* lint

* write new test that makes tf graphs of random algos; fix some bugs it caught

* add —delete flag to rcall upload-code command

* lint

* get cifar10 lazily for testing purposes

* disable codegen ci tests for now

* clean up rl_ops

* rename spec classes

* td3 with identity test

* identity tests without gin files

* remove gin.configurable from AlgoAgent

* comments about reduction in rl_ops_cc

* address @pzhokhov comments

* fix tests

* more linting

* better tests

* clean up filtering a bit

* fix concat

* delayed logger configuration (#208)

* delayed logger configuration

* fix typo

* setters and getters for Logger.DEFAULT as well

* do away with fancy property stuff - unable to get it to work with class level methods

* grammar and spaces

* spaces

* use get_current function instead of reading Logger.CURRENT

* autopep8

* disable mpi in subprocesses (#213)

* lazy_mpi load

* cleanups

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* silly recursion

* try os.environ hack

* better prefix test, work with mpich

* restored MPI imports

* removed commented import in test_with_mpi

* restored codegen from master

* remove lazy mpi

* restored changes from rl-algs

* remove extra files

* address Chris' comments

* use spawn for shmem vec env as well (#2) (#219)

* lazy_mpi load

* cleanups

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* silly recursion

* try os.environ hack

* better prefix test, work with mpich

* restored MPI imports

* removed commented import in test_with_mpi

* restored codegen from master

* remove lazy mpi

* restored changes from rl-algs

* remove extra files

* port mpi fix to shmem vec env

* increase the mpi test default timeout

* change humanoid hyperparameters, get rid of clip_Frac annealing, as it's apparently dangerous

* remove clip_frac schedule from ppo2

* more timesteps in humanoid run

* whitespace + RUN BENCHMARKS

* baselines: export vecenvs from folder (#221)

* baselines: export vecenvs from folder

* put missing function back in

* add missing imports

* more imports

* longer mpi timeout?

* make default logger configuration the same as call to logger.configure() (#222)

* Vecenv refactor (#223)

* update karl util

* restore pvi flag

* change rcall auto cpu behavior, move gin.configurable, add os.makedirs

* vecenv refactor

* aux buf index fix

* add num aux obs

* reset level with enter

* restore high difficulty flag

* bugfix

* restore train_coinrun.py

* tweaks

* renaming

* renaming

* better arguments handling

* more options

* options cleanup

* game data refactor

* more options

* args for train_procgen

* add close handler to interactive base class

* use debug build if debug=True, fix range on aux_obs

* add ProcGenEnv to __init__.py, add missing imports to procgen.py

* export RemoveDictWrapper and build, update train_procgen.py, move assets download into env creation and replace init_assets_and_build with just build

* fix formatting issues

* only call global init once

* fix path in setup.py

* revert part of makefile

* ignore IDE files and folders

* vec remove dict

* export VecRemoveDictObs

* remove RemoveDictWrapper

* remove IDE files

* move shared .h and .cpp files to common folder, update build to use those, dedupe env.cpp

* fix missing header

* try unified build function

* remove old scripts dir

* add comment on build

* upload libenv with render fixes

* tell qthreads to die when we unload the library

* pyglet.app.run is garbage

* static fixes

* whoops

* actually vsync is on

* cleanup

* cleanup

* extern C for libenv interface

* parse util rcall arg

* high difficulty fix

* game type enums

* ProcGenEnv subclasses

* game type cleanup

* unrecognized key

* unrecognized game type

* parse util reorg

* args management

* typo fix

* GinParser

* arg tweaks

* tweak

* restore start_level/num_levels setting

* fix create_procgen_env interface

* build fix

* procgen args in init signature

* fix

* build fix

* fix logger usage in ppo_metal/run_retro

* removed unnecessary OrderedDict requirement in subproc_vec_env

* flake8 fix

* allow for non-mpi tests

* mpi test fixes

* flake8; removed special logic for discrete spaces in dummy_vec_env

* remove forked argument in front of tests - does not play nicely with subprocvecenv in spawned processes; analog of forked in ddpg/test_smoke

* Everyrl initial commit & a few minor baselines changes (#226)

* everyrl initial commit

* add keep_buf argument to VecMonitor

* logger changes: set_comm and fix to mpi_mean functionality

* if filename not provided, don't create ResultsWriter

* change variable syncing function to simplify its usage. now you should initialize from all mpi processes

* everyrl coinrun changes

* tf_distr changes, bugfix

* get_one

* bring back get_next to temporarily restore code

* lint fixes

* fix test

* rename profile function

* rename gaussian

* fix coinrun training script

* change random seeding to work with new gym version (#231)

* change random seeding to work with new gym version

* move seeding to seed() method

* fix mnistenv

* actually try some of the tests before pushing

* more deterministic fixed seq

* misc changes to vecenvs and run.py for benchmarks (#236)

* misc changes to vecenvs and run.py for benchmarks

* dont seed global gen

* update more references to assert_venvs_equal

* Rl19 (#232)

* everyrl initial commit

* add keep_buf argument to VecMonitor

* logger changes: set_comm and fix to mpi_mean functionality

* if filename not provided, don't create ResultsWriter

* change variable syncing function to simplify its usage. now you should initialize from all mpi processes

* everyrl coinrun changes

* tf_distr changes, bugfix

* get_one

* bring back get_next to temporarily restore code

* lint fixes

* fix test

* rename profile function

* rename gaussian

* fix coinrun training script

* rl19

* remove everyrl dir which appeared in the merge for some reason

* readme

* fiddle with ddpg

* make ddpg work

* steps_total argument

* gpu count

* clean up hyperparams and shape math

* logging + saving

* configuration stuff

* fixes, smoke tests

* fix stats

* make load_results return dicts -- easier to create the same kind of objects with some other mechanism for passing to downstream functions

* benchmarks

* fix tests

* add dqn to tests, fix it

* minor

* turned annotated transformer (pytorch) into a script

* more refactoring

* jax stuff

* cluster

* minor

* copy & paste alec code

* sign error

* add huber, rename some parameters, snapshotting off by default

* remove jax stuff

* minor

* move maze env

* minor

* remove trailing spaces

* remove trailing space

* lint

* fix test breakage due to gym update

* rename function

* move maze back to codegen

* get recurrent ppo working

* enable both lstm and gru

* script to print table of benchmark results

* various

* fix dqn

* add fixup initializer, remove lastrew

* organize logging stats

* fix silly bug

* refactor models

* fix mpi usage

* check sync

* minor

* change vf coef, hps

* clean up slicing in ppo

* minor fixes

* caching transformer

* docstrings

* xf fixes

* get rid of 'B' and 'BT' arguments

* minor

* transformer example

* remove output_kind from base class until we have a better idea how to use it

* add comments, revert maze stuff

* flake8

* codegen lint

* fix codegen tests

* responded to peter's comments

* lint fixes

* minor changes to baselines (#243)

* minor changes to baselines

* fix spaces reference

* remove flake8 disable comments and fix import

* okay maybe don't add spec to vec_env

* Merge branch 'master' of github.com:openai/games

 the commit.

* flake8 complaints in baselines/her
2019-02-27 15:35:31 -08:00
Peter Zhokhov
fa5cb1e1f5 merged master 2019-02-27 15:05:24 -08:00
Peter Zhokhov
675b100190 raised the tolerance on the test_microbatches test 2019-02-27 14:22:24 -08:00
Peter Zhokhov
adc4388f6b fixes to catch changes in gym 2019-02-27 12:49:40 -08:00
Peter Zhokhov
6dedd5d241 flake8 complaints in baselines/her 2019-02-26 16:51:11 -08:00
Peter Zhokhov
5c7da772a4 Merge branch 'master' of github.com:openai/games
the commit.
2019-02-26 16:51:11 -08:00
Christopher Hesse
a4188f4b36 minor changes to baselines (#243)
* minor changes to baselines

* fix spaces reference

* remove flake8 disable comments and fix import

* okay maybe don't add spec to vec_env
2019-02-26 15:43:24 -08:00
John Schulman
fb6fd51fe6 Rl19 (#232)
* everyrl initial commit

* add keep_buf argument to VecMonitor

* logger changes: set_comm and fix to mpi_mean functionality

* if filename not provided, don't create ResultsWriter

* change variable syncing function to simplify its usage. now you should initialize from all mpi processes

* everyrl coinrun changes

* tf_distr changes, bugfix

* get_one

* bring back get_next to temporarily restore code

* lint fixes

* fix test

* rename profile function

* rename gaussian

* fix coinrun training script

* rl19

* remove everyrl dir which appeared in the merge for some reason

* readme

* fiddle with ddpg

* make ddpg work

* steps_total argument

* gpu count

* clean up hyperparams and shape math

* logging + saving

* configuration stuff

* fixes, smoke tests

* fix stats

* make load_results return dicts -- easier to create the same kind of objects with some other mechanism for passing to downstream functions

* benchmarks

* fix tests

* add dqn to tests, fix it

* minor

* turned annotated transformer (pytorch) into a script

* more refactoring

* jax stuff

* cluster

* minor

* copy & paste alec code

* sign error

* add huber, rename some parameters, snapshotting off by default

* remove jax stuff

* minor

* move maze env

* minor

* remove trailing spaces

* remove trailing space

* lint

* fix test breakage due to gym update

* rename function

* move maze back to codegen

* get recurrent ppo working

* enable both lstm and gru

* script to print table of benchmark results

* various

* fix dqn

* add fixup initializer, remove lastrew

* organize logging stats

* fix silly bug

* refactor models

* fix mpi usage

* check sync

* minor

* change vf coef, hps

* clean up slicing in ppo

* minor fixes

* caching transformer

* docstrings

* xf fixes

* get rid of 'B' and 'BT' arguments

* minor

* transformer example

* remove output_kind from base class until we have a better idea how to use it

* add comments, revert maze stuff

* flake8

* codegen lint

* fix codegen tests

* responded to peter's comments

* lint fixes
2019-02-26 15:43:24 -08:00
Christopher Hesse
ecf5394226 misc changes to vecenvs and run.py for benchmarks (#236)
* misc changes to vecenvs and run.py for benchmarks

* dont seed global gen

* update more references to assert_venvs_equal
2019-02-26 15:43:24 -08:00
Christopher Hesse
0dcaafd717 change random seeding to work with new gym version (#231)
* change random seeding to work with new gym version

* move seeding to seed() method

* fix mnistenv

* actually try some of the tests before pushing

* more deterministic fixed seq
2019-02-26 15:43:24 -08:00
John Schulman
82ebd4a153 Everyrl initial commit & a few minor baselines changes (#226)
* everyrl initial commit

* add keep_buf argument to VecMonitor

* logger changes: set_comm and fix to mpi_mean functionality

* if filename not provided, don't create ResultsWriter

* change variable syncing function to simplify its usage. now you should initialize from all mpi processes

* everyrl coinrun changes

* tf_distr changes, bugfix

* get_one

* bring back get_next to temporarily restore code

* lint fixes

* fix test

* rename profile function

* rename gaussian

* fix coinrun training script
2019-02-26 15:43:24 -08:00
Peter Zhokhov
cd8d3389ba remove forked argument in front of tests - does not play nicely with subprocvecenv in spawned processes; analog of forked in ddpg/test_smoke 2019-01-24 17:49:02 -08:00
Peter Zhokhov
0c949b0680 flake8; removed special logic for discrete spaces in dummy_vec_env 2019-01-24 15:57:18 -08:00
Peter Zhokhov
0e0dd77f61 mpi test fixes 2019-01-24 15:46:58 -08:00
Peter Zhokhov
e868bdaa1a allow for non-mpi tests 2019-01-24 14:35:41 -08:00
Peter Zhokhov
547764efc9 flake8 fix 2019-01-24 14:33:50 -08:00
Peter Zhokhov
bb05b9ee88 removed unnecessary OrderedDict requirement in subproc_vec_env 2019-01-24 14:29:35 -08:00
Karl Cobbe
1d56af90d3 Vecenv refactor (#223)
* update karl util

* restore pvi flag

* change rcall auto cpu behavior, move gin.configurable, add os.makedirs

* vecenv refactor

* aux buf index fix

* add num aux obs

* reset level with enter

* restore high difficulty flag

* bugfix

* restore train_coinrun.py

* tweaks

* renaming

* renaming

* better arguments handling

* more options

* options cleanup

* game data refactor

* more options

* args for train_procgen

* add close handler to interactive base class

* use debug build if debug=True, fix range on aux_obs

* add ProcGenEnv to __init__.py, add missing imports to procgen.py

* export RemoveDictWrapper and build, update train_procgen.py, move assets download into env creation and replace init_assets_and_build with just build

* fix formatting issues

* only call global init once

* fix path in setup.py

* revert part of makefile

* ignore IDE files and folders

* vec remove dict

* export VecRemoveDictObs

* remove RemoveDictWrapper

* remove IDE files

* move shared .h and .cpp files to common folder, update build to use those, dedupe env.cpp

* fix missing header

* try unified build function

* remove old scripts dir

* add comment on build

* upload libenv with render fixes

* tell qthreads to die when we unload the library

* pyglet.app.run is garbage

* static fixes

* whoops

* actually vsync is on

* cleanup

* cleanup

* extern C for libenv interface

* parse util rcall arg

* high difficulty fix

* game type enums

* ProcGenEnv subclasses

* game type cleanup

* unrecognized key

* unrecognized game type

* parse util reorg

* args management

* typo fix

* GinParser

* arg tweaks

* tweak

* restore start_level/num_levels setting

* fix create_procgen_env interface

* build fix

* procgen args in init signature

* fix

* build fix

* fix logger usage in ppo_metal/run_retro
2019-01-24 14:29:35 -08:00
pzhokhov
d760c363bc make default logger configuration the same as call to logger.configure() (#222) 2019-01-24 14:29:35 -08:00
Christopher Hesse
4ee173c30b baselines: export vecenvs from folder (#221)
* baselines: export vecenvs from folder

* put missing function back in

* add missing imports

* more imports

* longer mpi timeout?
2019-01-24 14:29:35 -08:00
John Schulman
ef1e80621a whitespace + RUN BENCHMARKS 2019-01-24 14:29:35 -08:00
John Schulman
3d800a99dc more timesteps in humanoid run 2019-01-24 14:29:35 -08:00
John Schulman
27b8644936 remove clip_frac schedule from ppo2 2019-01-24 14:29:35 -08:00
John Schulman
45063be393 change humanoid hyperparameters, get rid of clip_Frac annealing, as it's apparently dangerous 2019-01-24 14:29:35 -08:00
Christopher Hesse
8c547e5973 use spawn for shmem vec env as well (#2) (#219)
* lazy_mpi load

* cleanups

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* silly recursion

* try os.environ hack

* better prefix test, work with mpich

* restored MPI imports

* removed commented import in test_with_mpi

* restored codegen from master

* remove lazy mpi

* restored changes from rl-algs

* remove extra files

* port mpi fix to shmem vec env

* increase the mpi test default timeout
2019-01-24 14:29:35 -08:00
pzhokhov
a538e3c8f7 disable mpi in subprocesses (#213)
* lazy_mpi load

* cleanups

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* silly recursion

* try os.environ hack

* better prefix test, work with mpich

* restored MPI imports

* removed commented import in test_with_mpi

* restored codegen from master

* remove lazy mpi

* restored changes from rl-algs

* remove extra files

* address Chris' comments
2019-01-24 14:29:35 -08:00
pzhokhov
3a8f35a7e9 delayed logger configuration (#208)
* delayed logger configuration

* fix typo

* setters and getters for Logger.DEFAULT as well

* do away with fancy property stuff - unable to get it to work with class level methods

* grammar and spaces

* spaces

* use get_current function instead of reading Logger.CURRENT

* autopep8
2019-01-24 14:29:35 -08:00
John Schulman
370ee27750 1.5 months of codegen changes (#196)
* play with resnet

* feed_dict version

* coinrun prob and more stats

* fixes to get_choices_specs & hp search

* minor prob fixes

* minor fixes

* minor

* alternative version of rl_algo stuff

* pylint fixes

* fix bugs, move node_filters to soup

* changed how get_algo works

* change how get_algo works, probably broke all tests

* continue previous refactor

* get eval_agent running again

* fixing tests

* fix tests

* fix more tests

* clean up cma stuff

* fix experiment

* minor changes to eval_agent to make ppo_metal use gpu

* make dict space work

* modify mac makefile to use conda

* recurrent layers

* play with bn and resnets

* minor hp changes

* minor

* got rid of use_fb argument and jtft (joint-train-fine-tune) functionality
built test phase directly into AlgoProb

* make new rl algos generateable

* pylint; start fixing tests

* fixing tests

* more test fixes

* pylint

* fix search

* work on search

* hack around infinite loop caused by scan

* algo search fixes

* misc changes for search expt

* enable annealing, overriding options of Op

* pylint fixes

* identity op

* achieve use_last_output through masking so it automatically works in other distributions

* fix tests

* minor

* discrete

* use_last_output to be just a preference, not a hard constraint

* pred delay, pruning

* require nontrivial inputs

* aliases for get_sm

* add probname to probs

* fixes

* small fixes

* fix tests

* fix tests

* fix tests

* minor

* test scripts

* dualgru network improvements

* minor

* work on mysterious bugs

* rcall gpu-usage command for kube

* use cache dir that’s not in code folder, so that it doesn’t get removed by rcall code rsync

* add power mode to gpu usage

* make sure train/test actually different

* remove VR for now

* minor fixes

* simplify soln_db

* minor

* big refactor of mpi eda

* improve mpieda for multitask

* - get rid of timelimit hack
- add __del__ to cleanup SubprocVecEnv

* get multitask working better

* fixes

* working on atari, various

* annotate ops with whether they’re parametrized

* minor

* gym version

* rand atari prob

* minor

* SolnDb bugfix and name change

* pyspy script

* switch conv layers

* fix roboschool/bullet3

* nenvs assertion

* fix rand atari

* get rid of blanket exception catching
fix soln_db bug

* fix rand_atari

* dynamic routing as cmdline arg

* slight modifications to test_mpi_map and pyspy-all

* max_tries argument for run_until_successs

* dedup option in train_mle

* simplify soln_db

* increase atari horizon for 1 experiment

* start implementing reward increment

* ent multiplier

* create cc dsl
other misc fixes

* cc ops

* q_func -> qs in rl_algos_cc.py

* fix PredictDistr

* rl_ops_cc fixes, MakeAction op

* augment algo agent to support cc stuff

* work on ddpg experiments

* fix blocking
temporarily change logger

* allow layer scaling

* pylint fixes

* spawn_method

* isolate ddpg hacks

* improve pruning

* use spawn for subproc

* remove use of python -c in rcall

* fix pylint warning

* fix static

* maybe fix local backend

* switch to DummyVecEnv

* making some fixes via pylint

* pylint fixes

* fixing tests

* fix tests

* fix tests

* write scaffolding for SSL in Codegen

* logger fix

* fix error

* add EMA op to sl_ops

* save many changes

* save

* add upsampler

* add sl ops, enhance state machine

* get ssl search working — some gross hacking

* fix session/graph issue

* fix importing

* work on mle

* - scale embeddings in gru model
- better exception handling in sl_prob
- use emas for test/val
- use non-contrib batch_norm layer

* improve logging

* option to average before dumping in logger

* default arguments, etc

* new ddpg and identity test

* concat fix

* minor

* move realistic ssl stuff to third-party (underscore to dash)

* fixes

* remove realistic_ssl_evaluation

* pylint fixes

* use gym master

* try again

* pass around args without gin

* fix tests

* separate line to install gym

* rename failing tests that should be ignored

* add data aug

* ssl improvements

* use fixed time limit

* try to fix baselines tests

* add score_floor, max_walltime, fiddle with lr decay

* realistic_ssl

* autopep8

* various ssl
- enable blocking grad for simplification
- kl
- multiple final prediction

* fix pruning

* misc ssl stuff

* bring back linear schedule, don’t use allgather for collecting stats
(i’ve been getting nondeterministic errors from the old code)

* save/load weights in SSL, big stepsize

* cleanup SslProb

* fix

* get rid of kl coef

* fix simplification, lower lr

* search over hps

* minor fixes

* minor

* static analysis

* move files and rename things for improved consistency.
still broken, and just saving before making nontrivial changes

* various

* make tests pass

* move coinrun_train to codegen since it depends on codegen

* fixes

* pylint fixes

* improve tests
fix some things

* improve tests

* lint

* fix up db_info.py, tests

* mostly restore master version of envs directory, except for makefile changes

* fix tests

* improve printing

* minor fixes

* fix fixmes

* pruning test

* fixes

* lint

* write new test that makes tf graphs of random algos; fix some bugs it caught

* add —delete flag to rcall upload-code command

* lint

* get cifar10 lazily for testing purposes

* disable codegen ci tests for now

* clean up rl_ops

* rename spec classes

* td3 with identity test

* identity tests without gin files

* remove gin.configurable from AlgoAgent

* comments about reduction in rl_ops_cc

* address @pzhokhov comments

* fix tests

* more linting

* better tests

* clean up filtering a bit

* fix concat
2019-01-24 14:29:35 -08:00
Peter Zhokhov
8fe79aa76d Merge branch 'master' of github.com:openai/baselines into internal 2019-01-24 14:28:35 -08:00
pzhokhov
152971d6d4 Refactor her phase 1 (#194)
* add monitor to the rollout envs in her RUN BENCHMARKS her

* Slice -> Slide in her benchmarks RUN BENCHMARKS her

* run her benchmark for 200 epochs

* dummy commit to RUN BENCHMARKS her

* her benchmark for 500 epochs RUN BENCHMARKS her

* add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her

* add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her

* add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her

* disable saving of policies in her benchmark RUN BENCHMARKS her

* run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch

* run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch

* launcher refactor wip

* wip

* her works on FetchReach

* her runner refactor RUN BENCHMARKS Fetch1M

* unit test for her

* fixing warnings in mpi_average in her, skip test_fetchreach if mujoco is not present

* pickle-based serialization in her

* remove extra import from subproc_vec_env.py

* investigating differences in rollout.py

* try with old rollout code RUN BENCHMARKS her

* temporarily use DummyVecEnv in cmd_util.py RUN BENCHMARKS her

* dummy commit to RUN BENCHMARKS her

* set info_values in rollout worker in her RUN BENCHMARKS her

* bug in rollout_new.py RUN BENCHMARKS her

* fixed bug in rollout_new.py RUN BENCHMARKS her

* do not use last step because vecenv calls reset and returns obs after reset RUN BENCHMARKS her

* updated buffer sizes RUN BENCHMARKS her

* fixed loading/saving via joblib

* dust off learning from demonstrations in HER, docs, refactor

* add deprecation notice on her play and plot files

* address comments by Matthias
2018-12-18 17:47:36 -08:00
Peter Zhokhov
c4afffbb39 Merge branch 'master' of github.com:openai/baselines into internal 2018-11-29 17:31:58 -08:00
Peter Zhokhov
5b74b437d8 Merge branch 'master' of github.com:openai/baselines into internal 2018-11-26 16:43:10 -08:00
Srizzle
6509a51b96 fixed bug (#185)
* fixed bug 

it's wrong to do the else statement, because no other nodes would start.

* changed the fix slightly
2018-11-26 16:42:21 -08:00
pzhokhov
001597586d updates to the benchmark viewer code + autopep8 (#184)
* viz docs and syntactic sugar wip

* update viewer yaml to use persistent volume claims

* move plot_util to baselines.common, update links

* use 1Tb hard drive for results viewer

* small updates to benchmark vizualizer code

* autopep8

* autopep8

* any folder can be a benchmark

* massage games image a little bit

* fixed --preload option in app.py

* remove preload from run_viewer.sh

* remove pdb breakpoints

* update bench-viewer.yaml
2018-11-26 16:42:20 -08:00
Peter Zhokhov
1ddab4bdb5 Merge branch 'master' of github.com:openai/baselines into internal 2018-11-14 14:54:16 -08:00
Peter Zhokhov
776a134218 merge master 2018-11-13 11:24:57 -08:00
Peter Zhokhov
0b8126f949 more un-mpying 2018-11-09 10:08:39 -08:00
Peter Zhokhov
84323c3d49 flake8 and mpi4py imports in ppo2/model.py 2018-11-09 09:32:59 -08:00
Peter Zhokhov
5a2b96abdd Merge branch 'master' of github.com:openai/baselines into internal 2018-11-08 10:36:54 -08:00
Peter Zhokhov
57c23cddd6 mpi-less ppo2 (resolving merge conflict) 2018-11-08 10:36:36 -08:00
pzhokhov
310fbadba3 Peterz joshim5 subclass ppo2 model (#170)
* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* subclassing the model to make microbatched version of model WIP

* made microbatched model a subclass of ppo2 Model

* flake8 complaint
2018-11-08 10:20:49 -08:00
pzhokhov
c424f9889d microbatch fixes and test (#169)
* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix
2018-11-08 10:20:02 -08:00
peter
a1cef656b8 pass microbatch_size to the model during construction 2018-11-08 10:20:02 -08:00
pzhokhov
b0589da817 ppo2 with microbatches (#168) 2018-11-08 10:20:02 -08:00
Peter Zhokhov
021533be6c Merge branch 'master' of github.com:openai/baselines into internal 2018-11-07 16:37:31 -08:00
pzhokhov
67a1222267 Merge branch 'master' into internal 2018-11-06 10:26:14 -08:00
Peter Zhokhov
739ab6fa0e Merge branch 'internal' of github.com:openai/baselines into internal 2018-11-05 14:07:52 -08:00
Peter Zhokhov
6fd2270c47 fixing test failures 2018-10-31 14:11:26 -07:00
Joshua Meier
63151af41a support color vs. grayscale option in WarpFrame wrapper (#166)
* support color vs. grayscale option in WarpFrame wrapper

* Support color in other wrappers

* Updated per Peters suggestions
2018-10-31 14:11:26 -07:00
pzhokhov
e619e42364 match network output with action distribution via a linear layer only if necessary (#167) 2018-10-31 14:11:26 -07:00
Peter Zhokhov
5dbe4c2462 Merge branch 'master' of github.com:openai/baselines into internal 2018-10-31 13:58:29 -07:00
Peter Zhokhov
5878eb3862 joshim5 changes (width and height to WarpFrame wrapper) 2018-10-30 18:02:03 -07:00
65 changed files with 1146 additions and 628 deletions

View File

@@ -11,4 +11,4 @@ install:
script:
- flake8 . --show-source --statistics
- docker run baselines-test pytest -v --forked .
- docker run -e RUNSLOW=1 baselines-test pytest -v .

View File

@@ -89,7 +89,7 @@ python -m baselines.run --alg=ppo2 --env=Humanoid-v2 --network=mlp --num_timeste
will set entropy coefficient to 0.1, and construct fully connected network with 3 layers with 32 hidden units in each, and create a separate network for value function estimation (so that its parameters are not shared with the policy network, but the structure is the same)
See docstrings in [common/models.py](baselines/common/models.py) for description of network parameters for each type of model, and
docstring for [baselines/ppo2/ppo2.py/learn()](baselines/ppo2/ppo2.py#L152) for the description of the ppo2 hyperparamters.
docstring for [baselines/ppo2/ppo2.py/learn()](baselines/ppo2/ppo2.py#L152) for the description of the ppo2 hyperparameters.
### Example 2. DQN on Atari
DQN with Atari is at this point a classics of benchmarks. To run the baselines implementation of DQN on Atari Pong:
@@ -109,7 +109,7 @@ This should get to the mean reward per episode about 20. To load and visualize t
python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=0 --load_path=~/models/pong_20M_ppo2 --play
```
*NOTE:* At the moment Mujoco training uses VecNormalize wrapper for the environment which is not being saved correctly; so loading the models trained on Mujoco will not work well if the environment is recreated. If necessary, you can work around that by replacing RunningMeanStd by TfRunningMeanStd in [baselines/common/vec_env/vec_normalize.py](baselines/common/vec_env/vec_normalize.py#L12). This way, mean and std of environment normalizing wrapper will be saved in tensorflow variables and included in the model file; however, training is slower that way - hence not including it by default
*NOTE:* Mujoco environments require normalization to work properly, so we wrap them with VecNormalize wrapper. Currently, to ensure the models are saved with normalization (so that trained models can be restored and run without further training) the normalization coefficients are saved as tensorflow variables. This can decrease the performance somewhat, so if you require high-throughput steps with Mujoco and do not need saving/restoring the models, it may make sense to use numpy normalization instead. To do that, set 'use_tf=False` in [baselines/run.py](baselines/run.py#L116).
## Loading and vizualizing learning curves and other training metrics
See [here](docs/viz/viz.ipynb) for instructions on how to load and display the training data.

View File

@@ -11,6 +11,8 @@ from baselines.common.policies import build_policy
from baselines.a2c.utils import Scheduler, find_trainable_variables
from baselines.a2c.runner import Runner
from baselines.ppo2.ppo2 import safemean
from collections import deque
from tensorflow import losses
@@ -195,6 +197,7 @@ def learn(
# Instantiate the runner object
runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
epinfobuf = deque(maxlen=100)
# Calculate the batch_size
nbatch = nenvs*nsteps
@@ -204,7 +207,8 @@ def learn(
for update in range(1, total_timesteps//nbatch+1):
# Get mini batch of experiences
obs, states, rewards, masks, actions, values = runner.run()
obs, states, rewards, masks, actions, values, epinfos = runner.run()
epinfobuf.extend(epinfos)
policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
nseconds = time.time()-tstart
@@ -221,6 +225,8 @@ def learn(
logger.record_tabular("policy_entropy", float(policy_entropy))
logger.record_tabular("value_loss", float(value_loss))
logger.record_tabular("explained_variance", float(ev))
logger.record_tabular("eprewmean", safemean([epinfo['r'] for epinfo in epinfobuf]))
logger.record_tabular("eplenmean", safemean([epinfo['l'] for epinfo in epinfobuf]))
logger.dump_tabular()
return model

View File

@@ -22,6 +22,7 @@ class Runner(AbstractEnvRunner):
# We initialize the lists that will contain the mb of experiences
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [],[],[],[],[]
mb_states = self.states
epinfos = []
for n in range(self.nsteps):
# Given observations, take action and value (V(s))
# We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init
@@ -34,7 +35,10 @@ class Runner(AbstractEnvRunner):
mb_dones.append(self.dones)
# Take actions in env and look the results
obs, rewards, dones, _ = self.env.step(actions)
obs, rewards, dones, infos = self.env.step(actions)
for info in infos:
maybeepinfo = info.get('episode')
if maybeepinfo: epinfos.append(maybeepinfo)
self.states = states
self.dones = dones
self.obs = obs
@@ -69,4 +73,4 @@ class Runner(AbstractEnvRunner):
mb_rewards = mb_rewards.flatten()
mb_values = mb_values.flatten()
mb_masks = mb_masks.flatten()
return mb_obs, mb_states, mb_rewards, mb_masks, mb_actions, mb_values
return mb_obs, mb_states, mb_rewards, mb_masks, mb_actions, mb_values, epinfos

View File

@@ -11,6 +11,8 @@ from baselines.common.tf_util import get_session, save_variables, load_variables
from baselines.a2c.runner import Runner
from baselines.a2c.utils import Scheduler, find_trainable_variables
from baselines.acktr import kfac
from baselines.ppo2.ppo2 import safemean
from collections import deque
class Model(object):
@@ -90,7 +92,7 @@ class Model(object):
self.initial_state = step_model.initial_state
tf.global_variables_initializer().run(session=sess)
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=100, nprocs=32, nsteps=20,
ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
kfac_clip=0.001, save_interval=None, lrschedule='linear', load_path=None, is_async=True, **network_kwargs):
set_global_seeds(seed)
@@ -118,6 +120,7 @@ def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interva
model.load(load_path)
runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
epinfobuf = deque(maxlen=100)
nbatch = nenvs*nsteps
tstart = time.time()
coord = tf.train.Coordinator()
@@ -127,7 +130,8 @@ def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interva
enqueue_threads = []
for update in range(1, total_timesteps//nbatch+1):
obs, states, rewards, masks, actions, values = runner.run()
obs, states, rewards, masks, actions, values, epinfos = runner.run()
epinfobuf.extend(epinfos)
policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values)
model.old_obs = obs
nseconds = time.time()-tstart
@@ -141,6 +145,8 @@ def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interva
logger.record_tabular("policy_loss", float(policy_loss))
logger.record_tabular("value_loss", float(value_loss))
logger.record_tabular("explained_variance", float(ev))
logger.record_tabular("eprewmean", safemean([epinfo['r'] for epinfo in epinfobuf]))
logger.record_tabular("eplenmean", safemean([epinfo['l'] for epinfo in epinfobuf]))
logger.dump_tabular()
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir():

View File

@@ -11,7 +11,7 @@ KFAC_DEBUG = False
class KfacOptimizer():
# note that KfacOptimizer will be truly synchronous (and thus deterministic) only if a single-threaded session is used
def __init__(self, learning_rate=0.01, momentum=0.9, clip_kl=0.01, kfac_update=2, stats_accum_iter=60, full_stats_init=False, cold_iter=100, cold_lr=None, is_async=False, async_stats=False, epsilon=1e-2, stats_decay=0.95, blockdiag_bias=False, channel_fac=False, factored_damping=False, approxT2=False, use_float64=False, weight_decay_dict={},max_grad_norm=0.5):
self.max_grad_norm = max_grad_norm
self._lr = learning_rate

View File

@@ -20,7 +20,7 @@ def register_benchmark(benchmark):
if 'tasks' in benchmark:
for t in benchmark['tasks']:
if 'desc' not in t:
t['desc'] = remove_version_re.sub('', t['env_id'])
t['desc'] = remove_version_re.sub('', t.get('env_id', t.get('id')))
_BENCHMARKS.append(benchmark)

View File

@@ -16,11 +16,13 @@ class Monitor(Wrapper):
def __init__(self, env, filename, allow_early_resets=False, reset_keywords=(), info_keywords=()):
Wrapper.__init__(self, env=env)
self.tstart = time.time()
self.results_writer = ResultsWriter(
filename,
header={"t_start": time.time(), 'env_id' : env.spec and env.spec.id},
extra_keys=reset_keywords + info_keywords
)
if filename:
self.results_writer = ResultsWriter(filename,
header={"t_start": time.time(), 'env_id' : env.spec and env.spec.id},
extra_keys=reset_keywords + info_keywords
)
else:
self.results_writer = None
self.reset_keywords = reset_keywords
self.info_keywords = info_keywords
self.allow_early_resets = allow_early_resets
@@ -68,8 +70,9 @@ class Monitor(Wrapper):
self.episode_lengths.append(eplen)
self.episode_times.append(time.time() - self.tstart)
epinfo.update(self.current_reset_info)
self.results_writer.write_row(epinfo)
if self.results_writer:
self.results_writer.write_row(epinfo)
assert isinstance(info, dict)
if isinstance(info, dict):
info['episode'] = epinfo
@@ -96,24 +99,21 @@ class LoadMonitorResultsError(Exception):
class ResultsWriter(object):
def __init__(self, filename=None, header='', extra_keys=()):
def __init__(self, filename, header='', extra_keys=()):
self.extra_keys = extra_keys
if filename is None:
self.f = None
self.logger = None
else:
if not filename.endswith(Monitor.EXT):
if osp.isdir(filename):
filename = osp.join(filename, Monitor.EXT)
else:
filename = filename + "." + Monitor.EXT
self.f = open(filename, "wt")
if isinstance(header, dict):
header = '# {} \n'.format(json.dumps(header))
self.f.write(header)
self.logger = csv.DictWriter(self.f, fieldnames=('r', 'l', 't')+tuple(extra_keys))
self.logger.writeheader()
self.f.flush()
assert filename is not None
if not filename.endswith(Monitor.EXT):
if osp.isdir(filename):
filename = osp.join(filename, Monitor.EXT)
else:
filename = filename + "." + Monitor.EXT
self.f = open(filename, "wt")
if isinstance(header, dict):
header = '# {} \n'.format(json.dumps(header))
self.f.write(header)
self.logger = csv.DictWriter(self.f, fieldnames=('r', 'l', 't')+tuple(extra_keys))
self.logger.writeheader()
self.f.flush()
def write_row(self, epinfo):
if self.logger:
@@ -121,7 +121,6 @@ class ResultsWriter(object):
self.f.flush()
def get_monitor_files(dir):
return glob(osp.join(dir, "*" + Monitor.EXT))

View File

@@ -6,6 +6,8 @@ import gym
from gym import spaces
import cv2
cv2.ocl.setUseOpenCL(False)
from .wrappers import TimeLimit
class NoopResetEnv(gym.Wrapper):
def __init__(self, env, noop_max=30):
@@ -128,27 +130,60 @@ class ClipRewardEnv(gym.RewardWrapper):
"""Bin reward to {+1, 0, -1} by its sign."""
return np.sign(reward)
class WarpFrame(gym.ObservationWrapper):
def __init__(self, env, width=84, height=84, grayscale=True):
"""Warp frames to 84x84 as done in the Nature paper and later work."""
gym.ObservationWrapper.__init__(self, env)
self.width = width
self.height = height
self.grayscale = grayscale
if self.grayscale:
self.observation_space = spaces.Box(low=0, high=255,
shape=(self.height, self.width, 1), dtype=np.uint8)
else:
self.observation_space = spaces.Box(low=0, high=255,
shape=(self.height, self.width, 3), dtype=np.uint8)
def observation(self, frame):
if self.grayscale:
class WarpFrame(gym.ObservationWrapper):
def __init__(self, env, width=84, height=84, grayscale=True, dict_space_key=None):
"""
Warp frames to 84x84 as done in the Nature paper and later work.
If the environment uses dictionary observations, `dict_space_key` can be specified which indicates which
observation should be warped.
"""
super().__init__(env)
self._width = width
self._height = height
self._grayscale = grayscale
self._key = dict_space_key
if self._grayscale:
num_colors = 1
else:
num_colors = 3
new_space = gym.spaces.Box(
low=0,
high=255,
shape=(self._height, self._width, num_colors),
dtype=np.uint8,
)
if self._key is None:
original_space = self.observation_space
self.observation_space = new_space
else:
original_space = self.observation_space.spaces[self._key]
self.observation_space.spaces[self._key] = new_space
assert original_space.dtype == np.uint8 and len(original_space.shape) == 3
def observation(self, obs):
if self._key is None:
frame = obs
else:
frame = obs[self._key]
if self._grayscale:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)
if self.grayscale:
frame = cv2.resize(
frame, (self._width, self._height), interpolation=cv2.INTER_AREA
)
if self._grayscale:
frame = np.expand_dims(frame, -1)
return frame
if self._key is None:
obs = frame
else:
obs = obs.copy()
obs[self._key] = frame
return obs
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
@@ -219,16 +254,15 @@ class LazyFrames(object):
return len(self._force())
def __getitem__(self, i):
return self._force()[i]
return self._force()[..., i]
def make_atari(env_id, timelimit=True):
# XXX(john): remove timelimit argument after gym is upgraded to allow double wrapping
def make_atari(env_id, max_episode_steps=None):
env = gym.make(env_id)
if not timelimit:
env = env.env
assert 'NoFrameskip' in env.spec.id
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
if max_episode_steps is not None:
env = TimeLimit(env, max_episode_steps=max_episode_steps)
return env
def wrap_deepmind(env, episode_life=True, clip_rewards=True, frame_stack=False, scale=False):

View File

@@ -17,41 +17,60 @@ from baselines.common.atari_wrappers import make_atari, wrap_deepmind
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common import retro_wrappers
from baselines.common.wrappers import ClipActionsWrapper
def make_vec_env(env_id, env_type, num_env, seed,
wrapper_kwargs=None,
env_kwargs=None,
start_index=0,
reward_scale=1.0,
flatten_dict_observations=True,
gamestate=None):
gamestate=None,
initializer=None,
force_dummy=False):
"""
Create a wrapped, monitored SubprocVecEnv for Atari and MuJoCo.
"""
wrapper_kwargs = wrapper_kwargs or {}
env_kwargs = env_kwargs or {}
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
seed = seed + 10000 * mpi_rank if seed is not None else None
def make_thunk(rank):
logger_dir = logger.get_dir()
def make_thunk(rank, initializer=None):
return lambda: make_env(
env_id=env_id,
env_type=env_type,
subrank = rank,
mpi_rank=mpi_rank,
subrank=rank,
seed=seed,
reward_scale=reward_scale,
gamestate=gamestate,
flatten_dict_observations=flatten_dict_observations,
wrapper_kwargs=wrapper_kwargs
wrapper_kwargs=wrapper_kwargs,
env_kwargs=env_kwargs,
logger_dir=logger_dir,
initializer=initializer
)
set_global_seeds(seed)
if num_env > 1:
return SubprocVecEnv([make_thunk(i + start_index) for i in range(num_env)])
if not force_dummy and num_env > 1:
return SubprocVecEnv([make_thunk(i + start_index, initializer=initializer) for i in range(num_env)])
else:
return DummyVecEnv([make_thunk(start_index)])
return DummyVecEnv([make_thunk(i + start_index, initializer=None) for i in range(num_env)])
def make_env(env_id, env_type, subrank=0, seed=None, reward_scale=1.0, gamestate=None, flatten_dict_observations=True, wrapper_kwargs=None):
mpi_rank = MPI.COMM_WORLD.Get_rank() if MPI else 0
def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.0, gamestate=None, flatten_dict_observations=True, wrapper_kwargs=None, env_kwargs=None, logger_dir=None, initializer=None):
if initializer is not None:
initializer(mpi_rank=mpi_rank, subrank=subrank)
wrapper_kwargs = wrapper_kwargs or {}
env_kwargs = env_kwargs or {}
if ':' in env_id:
import re
import importlib
module_name = re.sub(':.*','',env_id)
env_id = re.sub('.*:', '', env_id)
importlib.import_module(module_name)
if env_type == 'atari':
env = make_atari(env_id)
elif env_type == 'retro':
@@ -59,7 +78,7 @@ def make_env(env_id, env_type, subrank=0, seed=None, reward_scale=1.0, gamestate
gamestate = gamestate or retro.State.DEFAULT
env = retro_wrappers.make_retro(game=env_id, max_episode_steps=10000, use_restricted_actions=retro.Actions.DISCRETE, state=gamestate)
else:
env = gym.make(env_id)
env = gym.make(env_id, **env_kwargs)
if flatten_dict_observations and isinstance(env.observation_space, gym.spaces.Dict):
keys = env.observation_space.spaces.keys()
@@ -67,14 +86,20 @@ def make_env(env_id, env_type, subrank=0, seed=None, reward_scale=1.0, gamestate
env.seed(seed + subrank if seed is not None else None)
env = Monitor(env,
logger.get_dir() and os.path.join(logger.get_dir(), str(mpi_rank) + '.' + str(subrank)),
logger_dir and os.path.join(logger_dir, str(mpi_rank) + '.' + str(subrank)),
allow_early_resets=True)
if env_type == 'atari':
env = wrap_deepmind(env, **wrapper_kwargs)
elif env_type == 'retro':
if 'frame_stack' not in wrapper_kwargs:
wrapper_kwargs['frame_stack'] = 1
env = retro_wrappers.wrap_deepmind_retro(env, **wrapper_kwargs)
if isinstance(env.action_space, gym.spaces.Box):
env = ClipActionsWrapper(env)
if reward_scale != 1:
env = retro_wrappers.RewardScaler(env, reward_scale)
@@ -134,6 +159,7 @@ def common_arg_parser():
"""
parser = arg_parser()
parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2')
parser.add_argument('--env_type', help='type of environment, used when the environment type cannot be automatically determined', type=str)
parser.add_argument('--seed', help='RNG seed', type=int, default=None)
parser.add_argument('--alg', help='Algorithm', type=str, default='ppo2')
parser.add_argument('--num_timesteps', type=float, default=1e6),
@@ -145,7 +171,6 @@ def common_arg_parser():
parser.add_argument('--save_video_interval', help='Save video every x steps (0 = disabled)', default=0, type=int)
parser.add_argument('--save_video_length', help='Length of recorded video. Default: 200', default=200, type=int)
parser.add_argument('--play', default=False, action='store_true')
parser.add_argument('--extra_import', help='Extra module to import to access external environments', type=str, default=None)
return parser
def robotics_arg_parser():

View File

@@ -206,7 +206,8 @@ class CategoricalPd(Pd):
class MultiCategoricalPd(Pd):
def __init__(self, nvec, flat):
self.flat = flat
self.categoricals = list(map(CategoricalPd, tf.split(flat, nvec, axis=-1)))
self.categoricals = list(map(CategoricalPd,
tf.split(flat, np.array(nvec, dtype=np.int32), axis=-1)))
def flatparam(self):
return self.flat
def mode(self):

View File

@@ -13,27 +13,6 @@ def zipsame(*seqs):
return zip(*seqs)
def unpack(seq, sizes):
"""
Unpack 'seq' into a sequence of lists, with lengths specified by 'sizes'.
None = just one bare element, not a list
Example:
unpack([1,2,3,4,5,6], [3,None,2]) -> ([1,2,3], 4, [5,6])
"""
seq = list(seq)
it = iter(seq)
assert sum(1 if s is None else s for s in sizes) == len(seq), "Trying to unpack %s into %s" % (seq, sizes)
for size in sizes:
if size is None:
yield it.__next__()
else:
li = []
for _ in range(size):
li.append(it.__next__())
yield li
class EzPickle(object):
"""Objects that are pickled and unpickled via their constructor
arguments.

View File

@@ -3,7 +3,6 @@ import tensorflow as tf
from baselines.a2c import utils
from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch
from baselines.common.mpi_running_mean_std import RunningMeanStd
import tensorflow.contrib.layers as layers
mapping = {}
@@ -26,6 +25,51 @@ def nature_cnn(unscaled_images, **conv_kwargs):
h3 = conv_to_fc(h3)
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
def build_impala_cnn(unscaled_images, depths=[16,32,32], **conv_kwargs):
"""
Model used in the paper "IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561
"""
layer_num = 0
def get_layer_num_str():
nonlocal layer_num
num_str = str(layer_num)
layer_num += 1
return num_str
def conv_layer(out, depth):
return tf.layers.conv2d(out, depth, 3, padding='same', name='layer_' + get_layer_num_str())
def residual_block(inputs):
depth = inputs.get_shape()[-1].value
out = tf.nn.relu(inputs)
out = conv_layer(out, depth)
out = tf.nn.relu(out)
out = conv_layer(out, depth)
return out + inputs
def conv_sequence(inputs, depth):
out = conv_layer(inputs, depth)
out = tf.layers.max_pooling2d(out, pool_size=3, strides=2, padding='same')
out = residual_block(out)
out = residual_block(out)
return out
out = tf.cast(unscaled_images, tf.float32) / 255.
for depth in depths:
out = conv_sequence(out, depth)
out = tf.layers.flatten(out)
out = tf.nn.relu(out)
out = tf.layers.dense(out, 256, activation=tf.nn.relu, name='layer_' + get_layer_num_str())
return out
@register("mlp")
def mlp(num_layers=2, num_hidden=64, activation=tf.tanh, layer_norm=False):
@@ -65,6 +109,11 @@ def cnn(**conv_kwargs):
return nature_cnn(X, **conv_kwargs)
return network_fn
@register("impala_cnn")
def impala_cnn(**conv_kwargs):
def network_fn(X):
return build_impala_cnn(X)
return network_fn
@register("cnn_small")
def cnn_small(**conv_kwargs):
@@ -79,7 +128,6 @@ def cnn_small(**conv_kwargs):
return h
return network_fn
@register("lstm")
def lstm(nlstm=128, layer_norm=False):
"""
@@ -136,12 +184,12 @@ def lstm(nlstm=128, layer_norm=False):
@register("cnn_lstm")
def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
def cnn_lstm(nlstm=128, layer_norm=False, conv_fn=nature_cnn, **conv_kwargs):
def network_fn(X, nenv=1):
nbatch = X.shape[0]
nsteps = nbatch // nenv
h = nature_cnn(X, **conv_kwargs)
h = conv_fn(X, **conv_kwargs)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, 2*nlstm]) #states
@@ -161,6 +209,9 @@ def cnn_lstm(nlstm=128, layer_norm=False, **conv_kwargs):
return network_fn
@register("impala_cnn_lstm")
def impala_cnn_lstm():
return cnn_lstm(nlstm=256, conv_fn=build_impala_cnn)
@register("cnn_lnlstm")
def cnn_lnlstm(nlstm=128, **conv_kwargs):
@@ -187,7 +238,7 @@ def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs):
out = tf.cast(X, tf.float32) / 255.
with tf.variable_scope("convnet"):
for num_outputs, kernel_size, stride in convs:
out = layers.convolution2d(out,
out = tf.contrib.layers.convolution2d(out,
num_outputs=num_outputs,
kernel_size=kernel_size,
stride=stride,

View File

@@ -1,31 +1,90 @@
import numpy as np
import tensorflow as tf
from mpi4py import MPI
from baselines.common import tf_util as U
from baselines.common.tests.test_with_mpi import with_mpi
from baselines import logger
try:
from mpi4py import MPI
except ImportError:
MPI = None
class MpiAdamOptimizer(tf.train.AdamOptimizer):
"""Adam optimizer that averages gradients across mpi processes."""
def __init__(self, comm, **kwargs):
def __init__(self, comm, grad_clip=None, mpi_rank_weight=1, **kwargs):
self.comm = comm
self.grad_clip = grad_clip
self.mpi_rank_weight = mpi_rank_weight
tf.train.AdamOptimizer.__init__(self, **kwargs)
def compute_gradients(self, loss, var_list, **kwargs):
grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs)
grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None]
flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0)
flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) * self.mpi_rank_weight
shapes = [v.shape.as_list() for g, v in grads_and_vars]
sizes = [int(np.prod(s)) for s in shapes]
num_tasks = self.comm.Get_size()
buf = np.zeros(sum(sizes), np.float32)
total_weight = np.zeros(1, np.float32)
self.comm.Allreduce(np.array([self.mpi_rank_weight], dtype=np.float32), total_weight, op=MPI.SUM)
total_weight = total_weight[0]
def _collect_grads(flat_grad):
buf = np.zeros(sum(sizes), np.float32)
countholder = [0] # Counts how many times _collect_grads has been called
stat = tf.reduce_sum(grads_and_vars[0][1]) # sum of first variable
def _collect_grads(flat_grad, np_stat):
if self.grad_clip is not None:
gradnorm = np.linalg.norm(flat_grad)
if gradnorm > 1:
flat_grad /= gradnorm
logger.logkv_mean('gradnorm', gradnorm)
logger.logkv_mean('gradclipfrac', float(gradnorm > 1))
self.comm.Allreduce(flat_grad, buf, op=MPI.SUM)
np.divide(buf, float(num_tasks), out=buf)
np.divide(buf, float(total_weight), out=buf)
if countholder[0] % 100 == 0:
check_synced(np_stat, self.comm)
countholder[0] += 1
return buf
avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32)
avg_flat_grad = tf.py_func(_collect_grads, [flat_grad, stat], tf.float32)
avg_flat_grad.set_shape(flat_grad.shape)
avg_grads = tf.split(avg_flat_grad, sizes, axis=0)
avg_grads_and_vars = [(tf.reshape(g, v.shape), v)
for g, (_, v) in zip(avg_grads, grads_and_vars)]
return avg_grads_and_vars
def check_synced(localval, comm=None):
"""
It's common to forget to initialize your variables to the same values, or
(less commonly) if you update them in some other way than adam, to get them out of sync.
This function checks that variables on all MPI workers are the same, and raises
an AssertionError otherwise
Arguments:
comm: MPI communicator
localval: list of local variables (list of variables on current worker to be compared with the other workers)
"""
comm = comm or MPI.COMM_WORLD
vals = comm.gather(localval)
if comm.rank == 0:
assert all(val==vals[0] for val in vals[1:]),\
f'MpiAdamOptimizer detected that different workers have different weights: {vals}'
@with_mpi(timeout=5)
def test_nonfreeze():
np.random.seed(0)
tf.set_random_seed(0)
a = tf.Variable(np.random.randn(3).astype('float32'))
b = tf.Variable(np.random.randn(2,5).astype('float32'))
loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b))
stepsize = 1e-2
# for some reason the session config with inter_op_parallelism_threads was causing
# nested sess.run calls to freeze
config = tf.ConfigProto(inter_op_parallelism_threads=1)
sess = U.get_session(config=config)
update_op = MpiAdamOptimizer(comm=MPI.COMM_WORLD, learning_rate=stepsize).minimize(loss)
sess.run(tf.global_variables_initializer())
losslist_ref = []
for i in range(100):
l,_ = sess.run([loss, update_op])
print(i, l)
losslist_ref.append(l)

View File

@@ -1,9 +1,16 @@
from collections import defaultdict
from mpi4py import MPI
import os, numpy as np
import platform
import shutil
import subprocess
import warnings
import sys
try:
from mpi4py import MPI
except ImportError:
MPI = None
def sync_from_root(sess, variables, comm=None):
"""
@@ -13,15 +20,10 @@ def sync_from_root(sess, variables, comm=None):
variables: all parameter variables including optimizer's
"""
if comm is None: comm = MPI.COMM_WORLD
rank = comm.Get_rank()
for var in variables:
if rank == 0:
comm.Bcast(sess.run(var))
else:
import tensorflow as tf
returned_var = np.empty(var.shape, dtype='float32')
comm.Bcast(returned_var)
sess.run(tf.assign(var, returned_var))
import tensorflow as tf
values = comm.bcast(sess.run(variables))
sess.run([tf.assign(var, val)
for (var, val) in zip(variables, values)])
def gpu_count():
"""
@@ -34,13 +36,15 @@ def gpu_count():
def setup_mpi_gpus():
"""
Set CUDA_VISIBLE_DEVICES using MPI.
Set CUDA_VISIBLE_DEVICES to MPI rank if not already set
"""
num_gpus = gpu_count()
if num_gpus == 0:
return
local_rank, _ = get_local_rank_size(MPI.COMM_WORLD)
os.environ['CUDA_VISIBLE_DEVICES'] = str(local_rank % num_gpus)
if 'CUDA_VISIBLE_DEVICES' not in os.environ:
if sys.platform == 'darwin': # This Assumes if you're on OSX you're just
ids = [] # doing a smoke test and don't want GPUs
else:
lrank, _lsize = get_local_rank_size(MPI.COMM_WORLD)
ids = [lrank]
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, ids))
def get_local_rank_size(comm):
"""
@@ -81,6 +85,9 @@ def share_file(comm, path):
comm.Barrier()
def dict_gather(comm, d, op='mean', assert_all_have_data=True):
"""
Perform a reduction operation over dicts
"""
if comm is None: return d
alldicts = comm.allgather(d)
size = comm.size
@@ -99,3 +106,28 @@ def dict_gather(comm, d, op='mean', assert_all_have_data=True):
else:
assert 0, op
return result
def mpi_weighted_mean(comm, local_name2valcount):
"""
Perform a weighted average over dicts that are each on a different node
Input: local_name2valcount: dict mapping key -> (value, count)
Returns: key -> mean
"""
all_name2valcount = comm.gather(local_name2valcount)
if comm.rank == 0:
name2sum = defaultdict(float)
name2count = defaultdict(float)
for n2vc in all_name2valcount:
for (name, (val, count)) in n2vc.items():
try:
val = float(val)
except ValueError:
if comm.rank == 0:
warnings.warn('WARNING: tried to compute mean on non-float {}={}'.format(name, val))
else:
name2sum[name] += val * count
name2count[name] += count
return {name : name2sum[name] / name2count[name] for name in name2sum}
else:
return {}

View File

@@ -90,6 +90,8 @@ def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_
sum_y *= interstep_decay
count_y *= interstep_decay
while True:
if luoi >= len(xolds):
break
xold = xolds[luoi]
if xold <= xnew:
decay = np.exp(- (xnew - xold) / decay_period)
@@ -98,8 +100,6 @@ def one_sided_ema(xolds, yolds, low=None, high=None, n=512, decay_steps=1., low_
luoi += 1
else:
break
if luoi >= len(xolds):
break
sum_ys[i] = sum_y
count_ys[i] = count_y
@@ -249,6 +249,9 @@ def plot_results(
legend_outside=False,
resample=0,
smooth_step=1.0,
tiling='vertical',
xlabel=None,
ylabel=None
):
'''
Plot multiple Results objects
@@ -300,9 +303,23 @@ def plot_results(
sk2r[splitkey].append(result)
assert len(sk2r) > 0
assert isinstance(resample, int), "0: don't resample. <integer>: that many samples"
nrows = len(sk2r)
ncols = 1
figsize = figsize or (6, 6 * nrows)
if tiling == 'vertical' or tiling is None:
nrows = len(sk2r)
ncols = 1
elif tiling == 'horizontal':
ncols = len(sk2r)
nrows = 1
elif tiling == 'symmetric':
import math
N = len(sk2r)
largest_divisor = 1
for i in range(1, int(math.sqrt(N))+1):
if N % i == 0:
largest_divisor = i
ncols = largest_divisor
nrows = N // ncols
figsize = figsize or (6 * ncols, 6 * nrows)
f, axarr = plt.subplots(nrows, ncols, sharex=False, squeeze=False, figsize=figsize)
groups = list(set(group_fn(result) for result in allresults))
@@ -316,7 +333,9 @@ def plot_results(
g2c = defaultdict(int)
sresults = sk2r[sk]
gresults = defaultdict(list)
ax = axarr[isplit][0]
idx_row = isplit // ncols
idx_col = isplit % ncols
ax = axarr[idx_row][idx_col]
for result in sresults:
group = group_fn(result)
g2c[group] += 1
@@ -355,7 +374,7 @@ def plot_results(
ymean = np.mean(ys, axis=0)
ystd = np.std(ys, axis=0)
ystderr = ystd / np.sqrt(len(ys))
l, = axarr[isplit][0].plot(usex, ymean, color=color)
l, = axarr[idx_row][idx_col].plot(usex, ymean, color=color)
g2l[group] = l
if shaded_err:
ax.fill_between(usex, ymean - ystderr, ymean + ystderr, color=color, alpha=.4)
@@ -372,6 +391,17 @@ def plot_results(
loc=2 if legend_outside else None,
bbox_to_anchor=(1,1) if legend_outside else None)
ax.set_title(sk)
# add xlabels, but only to the bottom row
if xlabel is not None:
for ax in axarr[-1]:
plt.sca(ax)
plt.xlabel(xlabel)
# add ylabels, but only to left column
if ylabel is not None:
for ax in axarr[:,0]:
plt.sca(ax)
plt.ylabel(ylabel)
return f, axarr
def regression_analysis(df):

View File

@@ -1,25 +1,11 @@
# flake8: noqa F403, F405
from .atari_wrappers import *
from collections import deque
import cv2
cv2.ocl.setUseOpenCL(False)
from .atari_wrappers import WarpFrame, ClipRewardEnv, FrameStack, ScaledFloatFrame
from .wrappers import TimeLimit
import numpy as np
import gym
class TimeLimit(gym.Wrapper):
def __init__(self, env, max_episode_steps=None):
super(TimeLimit, self).__init__(env)
self._max_episode_steps = max_episode_steps
self._elapsed_steps = 0
def step(self, ac):
observation, reward, done, info = self.env.step(ac)
self._elapsed_steps += 1
if self._elapsed_steps >= self._max_episode_steps:
done = True
info['TimeLimit.truncated'] = True
return observation, reward, done, info
def reset(self, **kwargs):
self._elapsed_steps = 0
return self.env.reset(**kwargs)
class StochasticFrameSkip(gym.Wrapper):
def __init__(self, env, n, stickprob):
@@ -99,7 +85,7 @@ class Downsample(gym.ObservationWrapper):
gym.ObservationWrapper.__init__(self, env)
(oldh, oldw, oldc) = env.observation_space.shape
newshape = (oldh//ratio, oldw//ratio, oldc)
self.observation_space = spaces.Box(low=0, high=255,
self.observation_space = gym.spaces.Box(low=0, high=255,
shape=newshape, dtype=np.uint8)
def observation(self, frame):
@@ -116,7 +102,7 @@ class Rgb2gray(gym.ObservationWrapper):
"""
gym.ObservationWrapper.__init__(self, env)
(oldh, oldw, _oldc) = env.observation_space.shape
self.observation_space = spaces.Box(low=0, high=255,
self.observation_space = gym.spaces.Box(low=0, high=255,
shape=(oldh, oldw, 1), dtype=np.uint8)
def observation(self, frame):
@@ -213,8 +199,10 @@ class StartDoingRandomActionsWrapper(gym.Wrapper):
self.some_random_steps()
return self.last_obs, rew, done, info
def make_retro(*, game, state, max_episode_steps, **kwargs):
def make_retro(*, game, state=None, max_episode_steps=4500, **kwargs):
import retro
if state is None:
state = retro.State.DEFAULT
env = retro.make(game, state, **kwargs)
env = StochasticFrameSkip(env, n=4, stickprob=0.25)
if max_episode_steps is not None:
@@ -227,7 +215,8 @@ def wrap_deepmind_retro(env, scale=True, frame_stack=4):
"""
env = WarpFrame(env)
env = ClipRewardEnv(env)
env = FrameStack(env, frame_stack)
if frame_stack > 1:
env = FrameStack(env, frame_stack)
if scale:
env = ScaledFloatFrame(env)
return env

View File

@@ -177,7 +177,7 @@ def profile_tf_runningmeanstd():
outfile = '/tmp/timeline.json'
with open(outfile, 'wt') as f:
f.write(chrome_trace)
print(f'Successfully saved profile to {outfile}. Exiting.')
print('Successfully saved profile to {}. Exiting.'.format(outfile))
exit(0)
'''

View File

@@ -0,0 +1,29 @@
from baselines.common import mpi_util
from baselines import logger
from baselines.common.tests.test_with_mpi import with_mpi
try:
from mpi4py import MPI
except ImportError:
MPI = None
@with_mpi()
def test_mpi_weighted_mean():
comm = MPI.COMM_WORLD
with logger.scoped_configure(comm=comm):
if comm.rank == 0:
name2valcount = {'a' : (10, 2), 'b' : (20,3)}
elif comm.rank == 1:
name2valcount = {'a' : (19, 1), 'c' : (42,3)}
else:
raise NotImplementedError
d = mpi_util.mpi_weighted_mean(comm, name2valcount)
correctval = {'a' : (10 * 2 + 19) / 3.0, 'b' : 20, 'c' : 42}
if comm.rank == 0:
assert d == correctval, '{} != {}'.format(d, correctval)
for name, (val, count) in name2valcount.items():
for _ in range(count):
logger.logkv_mean(name, val)
d2 = logger.dumpkvs()
if comm.rank == 0:
assert d2 == correctval

View File

@@ -0,0 +1,2 @@
import os, pytest
mark_slow = pytest.mark.skipif(not os.getenv('RUNSLOW'), reason='slow')

View File

@@ -7,19 +7,16 @@ class FixedSequenceEnv(Env):
def __init__(
self,
n_actions=10,
seed=0,
episode_len=100
):
self.np_random = np.random.RandomState()
self.np_random.seed(seed)
self.sequence = [self.np_random.randint(0, n_actions-1) for _ in range(episode_len)]
self.action_space = Discrete(n_actions)
self.observation_space = Discrete(1)
self.np_random = np.random.RandomState(0)
self.episode_len = episode_len
self.sequence = [self.np_random.randint(0, self.action_space.n)
for _ in range(self.episode_len)]
self.time = 0
self.reset()
def reset(self):
self.time = 0
@@ -30,11 +27,13 @@ class FixedSequenceEnv(Env):
self._choose_next_state()
done = False
if self.episode_len and self.time >= self.episode_len:
rew = 0
done = True
return 0, rew, done, {}
def seed(self, seed=None):
self.np_random.seed(seed)
def _choose_next_state(self):
self.time += 1

View File

@@ -2,41 +2,45 @@ import numpy as np
from abc import abstractmethod
from gym import Env
from gym.spaces import MultiDiscrete, Discrete, Box
from collections import deque
class IdentityEnv(Env):
def __init__(
self,
episode_len=None
episode_len=None,
delay=0,
zero_first_rewards=True
):
self.observation_space = self.action_space
self.episode_len = episode_len
self.time = 0
self.reset()
self.delay = delay
self.zero_first_rewards = zero_first_rewards
self.q = deque(maxlen=delay+1)
def reset(self):
self._choose_next_state()
self.q.clear()
for _ in range(self.delay + 1):
self.q.append(self.action_space.sample())
self.time = 0
self.observation_space = self.action_space
return self.state
return self.q[-1]
def step(self, actions):
rew = self._get_reward(actions)
self._choose_next_state()
done = False
if self.episode_len and self.time >= self.episode_len:
rew = self._get_reward(self.q.popleft(), actions)
if self.zero_first_rewards and self.time < self.delay:
rew = 0
done = True
return self.state, rew, done, {}
def _choose_next_state(self):
self.state = self.action_space.sample()
self.q.append(self.action_space.sample())
self.time += 1
done = self.episode_len is not None and self.time >= self.episode_len
return self.q[-1], rew, done, {}
def seed(self, seed=None):
self.action_space.seed(seed)
@abstractmethod
def _get_reward(self, actions):
def _get_reward(self, state, actions):
raise NotImplementedError
@@ -45,26 +49,29 @@ class DiscreteIdentityEnv(IdentityEnv):
self,
dim,
episode_len=None,
delay=0,
zero_first_rewards=True
):
self.action_space = Discrete(dim)
super().__init__(episode_len=episode_len)
super().__init__(episode_len=episode_len, delay=delay, zero_first_rewards=zero_first_rewards)
def _get_reward(self, actions):
return 1 if self.state == actions else 0
def _get_reward(self, state, actions):
return 1 if state == actions else 0
class MultiDiscreteIdentityEnv(IdentityEnv):
def __init__(
self,
dims,
episode_len=None,
delay=0,
):
self.action_space = MultiDiscrete(dims)
super().__init__(episode_len=episode_len)
super().__init__(episode_len=episode_len, delay=delay)
def _get_reward(self, actions):
return 1 if all(self.state == actions) else 0
def _get_reward(self, state, actions):
return 1 if all(state == actions) else 0
class BoxIdentityEnv(IdentityEnv):
@@ -74,10 +81,10 @@ class BoxIdentityEnv(IdentityEnv):
episode_len=None,
):
self.action_space = Box(low=-1.0, high=1.0, shape=shape)
self.action_space = Box(low=-1.0, high=1.0, shape=shape, dtype=np.float32)
super().__init__(episode_len=episode_len)
def _get_reward(self, actions):
diff = actions - self.state
def _get_reward(self, state, actions):
diff = actions - state
diff = diff[:]
return -0.5 * np.dot(diff, diff)

View File

@@ -0,0 +1,36 @@
from baselines.common.tests.envs.identity_env import DiscreteIdentityEnv
def test_discrete_nodelay():
nsteps = 100
eplen = 50
env = DiscreteIdentityEnv(10, episode_len=eplen)
ob = env.reset()
for t in range(nsteps):
action = env.action_space.sample()
next_ob, rew, done, info = env.step(action)
assert rew == (1 if action == ob else 0)
if (t + 1) % eplen == 0:
assert done
next_ob = env.reset()
else:
assert not done
ob = next_ob
def test_discrete_delay1():
eplen = 50
env = DiscreteIdentityEnv(10, episode_len=eplen, delay=1)
ob = env.reset()
prev_ob = None
for t in range(eplen):
action = env.action_space.sample()
next_ob, rew, done, info = env.step(action)
if t > 0:
assert rew == (1 if action == prev_ob else 0)
else:
assert rew == 0
prev_ob = ob
ob = next_ob
if t < eplen - 1:
assert not done
assert done

View File

@@ -9,7 +9,6 @@ from gym.spaces import Discrete, Box
class MnistEnv(Env):
def __init__(
self,
seed=0,
episode_len=None,
no_images=None
):
@@ -23,7 +22,6 @@ class MnistEnv(Env):
self.mnist = input_data.read_data_sets(mnist_path)
self.np_random = np.random.RandomState()
self.np_random.seed(seed)
self.observation_space = Box(low=0.0, high=1.0, shape=(28,28,1))
self.action_space = Discrete(10)
@@ -50,6 +48,9 @@ class MnistEnv(Env):
return self.state[0], rew, done, {}
def seed(self, seed=None):
self.np_random.seed(seed)
def train_mode(self):
self.dataset = self.mnist.train

View File

@@ -3,6 +3,7 @@ import gym
from baselines.run import get_learn_function
from baselines.common.tests.util import reward_per_episode_test
from baselines.common.tests import mark_slow
common_kwargs = dict(
total_timesteps=30000,
@@ -20,7 +21,7 @@ learn_kwargs = {
'trpo_mpi': {}
}
@pytest.mark.slow
@mark_slow
@pytest.mark.parametrize("alg", learn_kwargs.keys())
def test_cartpole(alg):
'''

View File

@@ -3,6 +3,7 @@ import gym
from baselines.run import get_learn_function
from baselines.common.tests.util import reward_per_episode_test
from baselines.common.tests import mark_slow
pytest.importorskip('mujoco_py')
@@ -15,7 +16,7 @@ learn_kwargs = {
'her': dict(total_timesteps=2000)
}
@pytest.mark.slow
@mark_slow
@pytest.mark.parametrize("alg", learn_kwargs.keys())
def test_fetchreach(alg):
'''

View File

@@ -3,6 +3,8 @@ from baselines.common.tests.envs.fixed_sequence_env import FixedSequenceEnv
from baselines.common.tests.util import simple_test
from baselines.run import get_learn_function
from baselines.common.tests import mark_slow
common_kwargs = dict(
seed=0,
@@ -21,7 +23,7 @@ learn_kwargs = {
alg_list = learn_kwargs.keys()
rnn_list = ['lstm']
@pytest.mark.slow
@mark_slow
@pytest.mark.parametrize("alg", alg_list)
@pytest.mark.parametrize("rnn", rnn_list)
def test_fixed_sequence(alg, rnn):
@@ -33,8 +35,7 @@ def test_fixed_sequence(alg, rnn):
kwargs = learn_kwargs[alg]
kwargs.update(common_kwargs)
episode_len = 5
env_fn = lambda: FixedSequenceEnv(10, episode_len=episode_len)
env_fn = lambda: FixedSequenceEnv(n_actions=10, episode_len=5)
learn = lambda e: get_learn_function(alg)(
env=e,
network=rnn,

View File

@@ -2,6 +2,7 @@ import pytest
from baselines.common.tests.envs.identity_env import DiscreteIdentityEnv, BoxIdentityEnv, MultiDiscreteIdentityEnv
from baselines.run import get_learn_function
from baselines.common.tests.util import simple_test
from baselines.common.tests import mark_slow
common_kwargs = dict(
total_timesteps=30000,
@@ -24,7 +25,7 @@ algos_disc = ['a2c', 'acktr', 'deepq', 'ppo2', 'trpo_mpi']
algos_multidisc = ['a2c', 'acktr', 'ppo2', 'trpo_mpi']
algos_cont = ['a2c', 'acktr', 'ddpg', 'ppo2', 'trpo_mpi']
@pytest.mark.slow
@mark_slow
@pytest.mark.parametrize("alg", algos_disc)
def test_discrete_identity(alg):
'''
@@ -39,7 +40,7 @@ def test_discrete_identity(alg):
env_fn = lambda: DiscreteIdentityEnv(10, episode_len=100)
simple_test(env_fn, learn_fn, 0.9)
@pytest.mark.slow
@mark_slow
@pytest.mark.parametrize("alg", algos_multidisc)
def test_multidiscrete_identity(alg):
'''
@@ -54,7 +55,7 @@ def test_multidiscrete_identity(alg):
env_fn = lambda: MultiDiscreteIdentityEnv((3,3), episode_len=100)
simple_test(env_fn, learn_fn, 0.9)
@pytest.mark.slow
@mark_slow
@pytest.mark.parametrize("alg", algos_cont)
def test_continuous_identity(alg):
'''

View File

@@ -4,7 +4,7 @@ import pytest
from baselines.common.tests.envs.mnist_env import MnistEnv
from baselines.common.tests.util import simple_test
from baselines.run import get_learn_function
from baselines.common.tests import mark_slow
# TODO investigate a2c and ppo2 failures - is it due to bad hyperparameters for this problem?
# GitHub issue https://github.com/openai/baselines/issues/189
@@ -28,7 +28,7 @@ learn_args = {
#tests pass, but are too slow on travis. Same algorithms are covered
# by other tests with less compute-hungry nn's and by benchmarks
@pytest.mark.skip
@pytest.mark.slow
@mark_slow
@pytest.mark.parametrize("alg", learn_args.keys())
def test_mnist(alg):
'''
@@ -41,7 +41,7 @@ def test_mnist(alg):
learn = get_learn_function(alg)
learn_fn = lambda e: learn(env=e, **learn_kwargs)
env_fn = lambda: MnistEnv(seed=0, episode_len=100)
env_fn = lambda: MnistEnv(episode_len=100)
simple_test(env_fn, learn_fn, 0.6)

View File

@@ -0,0 +1,17 @@
# smoke tests of plot_util
from baselines.common import plot_util as pu
from baselines.common.tests.util import smoketest
def test_plot_util():
nruns = 4
logdirs = [smoketest('--alg=ppo2 --env=CartPole-v0 --num_timesteps=10000') for _ in range(nruns)]
data = pu.load_results(logdirs)
assert len(data) == 4
_, axes = pu.plot_results(data[:1]); assert len(axes) == 1
_, axes = pu.plot_results(data, tiling='vertical'); assert axes.shape==(4,1)
_, axes = pu.plot_results(data, tiling='horizontal'); assert axes.shape==(1,4)
_, axes = pu.plot_results(data, tiling='symmetric'); assert axes.shape==(2,2)
_, axes = pu.plot_results(data, split_fn=lambda _: ''); assert len(axes) == 1

View File

@@ -44,7 +44,12 @@ def test_serialization(learn_fn, network_fn):
# github issue: https://github.com/openai/baselines/issues/660
return
env = DummyVecEnv([lambda: MnistEnv(10, episode_len=100)])
def make_env():
env = MnistEnv(episode_len=100)
env.seed(10)
return env
env = DummyVecEnv([make_env])
ob = env.reset().copy()
learn = get_learn_function(learn_fn)

View File

@@ -0,0 +1,38 @@
import os
import sys
import subprocess
import cloudpickle
import base64
import pytest
from functools import wraps
try:
from mpi4py import MPI
except ImportError:
MPI = None
def with_mpi(nproc=2, timeout=30, skip_if_no_mpi=True):
def outer_thunk(fn):
@wraps(fn)
def thunk(*args, **kwargs):
serialized_fn = base64.b64encode(cloudpickle.dumps(lambda: fn(*args, **kwargs)))
subprocess.check_call([
'mpiexec','-n', str(nproc),
sys.executable,
'-m', 'baselines.common.tests.test_with_mpi',
serialized_fn
], env=os.environ, timeout=timeout)
if skip_if_no_mpi:
return pytest.mark.skipif(MPI is None, reason="MPI not present")(thunk)
else:
return thunk
return outer_thunk
if __name__ == '__main__':
if len(sys.argv) > 1:
fn = cloudpickle.loads(base64.b64decode(sys.argv[1]))
assert callable(fn)
fn()

View File

@@ -1,56 +1,50 @@
import tensorflow as tf
import numpy as np
from gym.spaces import np_random
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
N_TRIALS = 10000
N_EPISODES = 100
_sess_config = tf.ConfigProto(
allow_soft_placement=True,
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1
)
def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS):
def seeded_env_fn():
env = env_fn()
env.seed(0)
return env
np.random.seed(0)
np_random.seed(0)
env = DummyVecEnv([env_fn])
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
env = DummyVecEnv([seeded_env_fn])
with tf.Graph().as_default(), tf.Session(config=_sess_config).as_default():
tf.set_random_seed(0)
model = learn_fn(env)
sum_rew = 0
done = True
for i in range(n_trials):
if done:
obs = env.reset()
state = model.initial_state
if state is not None:
a, v, state, _ = model.step(obs, S=state, M=[False])
else:
a, v, _, _ = model.step(obs)
obs, rew, done, _ = env.step(a)
sum_rew += float(rew)
print("Reward in {} trials is {}".format(n_trials, sum_rew))
assert sum_rew > min_reward_fraction * n_trials, \
'sum of rewards {} is less than {} of the total number of trials {}'.format(sum_rew, min_reward_fraction, n_trials)
def reward_per_episode_test(env_fn, learn_fn, min_avg_reward, n_trials=N_EPISODES):
env = DummyVecEnv([env_fn])
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():
with tf.Graph().as_default(), tf.Session(config=_sess_config).as_default():
model = learn_fn(env)
N_TRIALS = 100
observations, actions, rewards = rollout(env, model, N_TRIALS)
rewards = [sum(r) for r in rewards]
avg_rew = sum(rewards) / N_TRIALS
print("Average reward in {} episodes is {}".format(n_trials, avg_rew))
assert avg_rew > min_avg_reward, \
@@ -60,14 +54,12 @@ def rollout(env, model, n_trials):
rewards = []
actions = []
observations = []
for i in range(n_trials):
obs = env.reset()
state = model.initial_state if hasattr(model, 'initial_state') else None
episode_rew = []
episode_actions = []
episode_obs = []
while True:
if state is not None:
a, v, state, _ = model.step(obs, S=state, M=[False])
@@ -75,17 +67,26 @@ def rollout(env, model, n_trials):
a,v, _, _ = model.step(obs)
obs, rew, done, _ = env.step(a)
episode_rew.append(rew)
episode_actions.append(a)
episode_obs.append(obs)
if done:
break
rewards.append(episode_rew)
actions.append(episode_actions)
observations.append(episode_obs)
return observations, actions, rewards
def smoketest(argstr, **kwargs):
import tempfile
import subprocess
import os
argstr = 'python -m baselines.run ' + argstr
for key, value in kwargs:
argstr += ' --{}={}'.format(key, value)
tempdir = tempfile.mkdtemp()
env = os.environ.copy()
env['OPENAI_LOGDIR'] = tempdir
subprocess.run(argstr.split(' '), env=env)
return tempdir

View File

@@ -1,4 +1,3 @@
import joblib
import numpy as np
import tensorflow as tf # pylint: ignore-module
import copy
@@ -306,12 +305,17 @@ def display_var_info(vars):
logger.info("Total model parameters: %0.2f million" % (count_params*1e-6))
def get_available_gpus():
# recipe from here:
# https://stackoverflow.com/questions/38559755/how-to-get-current-available-gpus-in-tensorflow?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
def get_available_gpus(session_config=None):
# based on recipe from https://stackoverflow.com/a/38580201
# Unless we allocate a session here, subsequent attempts to create one
# will ignore our custom config (in particular, allow_growth=True will have
# no effect).
if session_config is None:
session_config = get_session()._config
from tensorflow.python.client import device_lib
local_device_protos = device_lib.list_local_devices()
local_device_protos = device_lib.list_local_devices(session_config)
return [x.name for x in local_device_protos if x.device_type == 'GPU']
# ================================================================
@@ -339,6 +343,7 @@ def save_state(fname, sess=None):
# TODO: ensure there is no subtle differences and remove one
def save_variables(save_path, variables=None, sess=None):
import joblib
sess = sess or get_session()
variables = variables or tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
@@ -350,6 +355,7 @@ def save_variables(save_path, variables=None, sess=None):
joblib.dump(save_dict, save_path)
def load_variables(load_path, variables=None, sess=None):
import joblib
sess = sess or get_session()
variables = variables or tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)

View File

@@ -1,185 +1,10 @@
from abc import ABC, abstractmethod
from baselines.common.tile_images import tile_images
from .vec_env import AlreadySteppingError, NotSteppingError, VecEnv, VecEnvWrapper, VecEnvObservationWrapper, CloudpickleWrapper
from .dummy_vec_env import DummyVecEnv
from .shmem_vec_env import ShmemVecEnv
from .subproc_vec_env import SubprocVecEnv
from .vec_frame_stack import VecFrameStack
from .vec_monitor import VecMonitor
from .vec_normalize import VecNormalize
from .vec_remove_dict_obs import VecExtractDictObs
class AlreadySteppingError(Exception):
"""
Raised when an asynchronous step is running while
step_async() is called again.
"""
def __init__(self):
msg = 'already running an async step'
Exception.__init__(self, msg)
class NotSteppingError(Exception):
"""
Raised when an asynchronous step is not running but
step_wait() is called.
"""
def __init__(self):
msg = 'not running an async step'
Exception.__init__(self, msg)
class VecEnv(ABC):
"""
An abstract asynchronous, vectorized environment.
Used to batch data from multiple copies of an environment, so that
each observation becomes an batch of observations, and expected action is a batch of actions to
be applied per-environment.
"""
closed = False
viewer = None
metadata = {
'render.modes': ['human', 'rgb_array']
}
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.observation_space = observation_space
self.action_space = action_space
@abstractmethod
def reset(self):
"""
Reset all the environments and return an array of
observations, or a dict of observation arrays.
If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.
"""
pass
@abstractmethod
def step_async(self, actions):
"""
Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.
You should not call this if a step_async run is
already pending.
"""
pass
@abstractmethod
def step_wait(self):
"""
Wait for the step taken with step_async().
Returns (obs, rews, dones, infos):
- obs: an array of observations, or a dict of
arrays of observations.
- rews: an array of rewards
- dones: an array of "episode done" booleans
- infos: a sequence of info objects
"""
pass
def close_extras(self):
"""
Clean up the extra resources, beyond what's in this base class.
Only runs when not self.closed.
"""
pass
def close(self):
if self.closed:
return
if self.viewer is not None:
self.viewer.close()
self.close_extras()
self.closed = True
def step(self, actions):
"""
Step the environments synchronously.
This is available for backwards compatibility.
"""
self.step_async(actions)
return self.step_wait()
def render(self, mode='human'):
imgs = self.get_images()
bigimg = tile_images(imgs)
if mode == 'human':
self.get_viewer().imshow(bigimg)
return self.get_viewer().isopen
elif mode == 'rgb_array':
return bigimg
else:
raise NotImplementedError
def get_images(self):
"""
Return RGB images from each environment
"""
raise NotImplementedError
@property
def unwrapped(self):
if isinstance(self, VecEnvWrapper):
return self.venv.unwrapped
else:
return self
def get_viewer(self):
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.SimpleImageViewer()
return self.viewer
class VecEnvWrapper(VecEnv):
"""
An environment wrapper that applies to an entire batch
of environments at once.
"""
def __init__(self, venv, observation_space=None, action_space=None):
self.venv = venv
VecEnv.__init__(self,
num_envs=venv.num_envs,
observation_space=observation_space or venv.observation_space,
action_space=action_space or venv.action_space)
def step_async(self, actions):
self.venv.step_async(actions)
@abstractmethod
def reset(self):
pass
@abstractmethod
def step_wait(self):
pass
def close(self):
return self.venv.close()
def render(self, mode='human'):
return self.venv.render(mode=mode)
def get_images(self):
return self.venv.get_images()
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)
__all__ = ['AlreadySteppingError', 'NotSteppingError', 'VecEnv', 'VecEnvWrapper', 'VecEnvObservationWrapper', 'CloudpickleWrapper', 'DummyVecEnv', 'ShmemVecEnv', 'SubprocVecEnv', 'VecFrameStack', 'VecMonitor', 'VecNormalize', 'VecExtractDictObs']

View File

@@ -1,6 +1,5 @@
import numpy as np
from gym import spaces
from . import VecEnv
from .vec_env import VecEnv
from .util import copy_obs_dict, dict_to_obs, obs_space_info
class DummyVecEnv(VecEnv):
@@ -27,7 +26,7 @@ class DummyVecEnv(VecEnv):
self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32)
self.buf_infos = [{} for _ in range(self.num_envs)]
self.actions = None
self.specs = [e.spec for e in self.envs]
self.spec = self.envs[0].spec
def step_async(self, actions):
listify = True
@@ -46,8 +45,8 @@ class DummyVecEnv(VecEnv):
def step_wait(self):
for e in range(self.num_envs):
action = self.actions[e]
if isinstance(self.envs[e].action_space, spaces.Discrete):
action = int(action)
# if isinstance(self.envs[e].action_space, spaces.Discrete):
# action = int(action)
obs, self.buf_rews[e], self.buf_dones[e], self.buf_infos[e] = self.envs[e].step(action)
if self.buf_dones[e]:

View File

@@ -2,9 +2,9 @@
An interface for asynchronous vectorized environments.
"""
from multiprocessing import Pipe, Array, Process
import multiprocessing as mp
import numpy as np
from . import VecEnv, CloudpickleWrapper
from .vec_env import VecEnv, CloudpickleWrapper, clear_mpi_env_vars
import ctypes
from baselines import logger
@@ -22,11 +22,12 @@ class ShmemVecEnv(VecEnv):
Optimized version of SubprocVecEnv that uses shared variables to communicate observations.
"""
def __init__(self, env_fns, spaces=None):
def __init__(self, env_fns, spaces=None, context='spawn'):
"""
If you don't specify observation_space, we'll have to create a dummy
environment to get it.
"""
ctx = mp.get_context(context)
if spaces:
observation_space, action_space = spaces
else:
@@ -39,22 +40,22 @@ class ShmemVecEnv(VecEnv):
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
self.obs_keys, self.obs_shapes, self.obs_dtypes = obs_space_info(observation_space)
self.obs_bufs = [
{k: Array(_NP_TO_CT[self.obs_dtypes[k].type], int(np.prod(self.obs_shapes[k]))) for k in self.obs_keys}
{k: ctx.Array(_NP_TO_CT[self.obs_dtypes[k].type], int(np.prod(self.obs_shapes[k]))) for k in self.obs_keys}
for _ in env_fns]
self.parent_pipes = []
self.procs = []
for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
wrapped_fn = CloudpickleWrapper(env_fn)
parent_pipe, child_pipe = Pipe()
proc = Process(target=_subproc_worker,
args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes, self.obs_dtypes, self.obs_keys))
proc.daemon = True
self.procs.append(proc)
self.parent_pipes.append(parent_pipe)
proc.start()
child_pipe.close()
with clear_mpi_env_vars():
for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
wrapped_fn = CloudpickleWrapper(env_fn)
parent_pipe, child_pipe = ctx.Pipe()
proc = ctx.Process(target=_subproc_worker,
args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes, self.obs_dtypes, self.obs_keys))
proc.daemon = True
self.procs.append(proc)
self.parent_pipes.append(parent_pipe)
proc.start()
child_pipe.close()
self.waiting_step = False
self.specs = [f().spec for f in env_fns]
self.viewer = None
def reset(self):

View File

@@ -1,6 +1,8 @@
import multiprocessing as mp
import numpy as np
from multiprocessing import Process, Pipe
from . import VecEnv, CloudpickleWrapper
from .vec_env import VecEnv, CloudpickleWrapper, clear_mpi_env_vars
def worker(remote, parent_remote, env_fn_wrapper):
parent_remote.close()
@@ -21,8 +23,8 @@ def worker(remote, parent_remote, env_fn_wrapper):
elif cmd == 'close':
remote.close()
break
elif cmd == 'get_spaces':
remote.send((env.observation_space, env.action_space))
elif cmd == 'get_spaces_spec':
remote.send((env.observation_space, env.action_space, env.spec))
else:
raise NotImplementedError
except KeyboardInterrupt:
@@ -36,7 +38,7 @@ class SubprocVecEnv(VecEnv):
VecEnv that runs multiple environments in parallel in subproceses and communicates with them via pipes.
Recommended to use when num_envs > 1 and step() can be a bottleneck.
"""
def __init__(self, env_fns, spaces=None):
def __init__(self, env_fns, spaces=None, context='spawn'):
"""
Arguments:
@@ -45,19 +47,20 @@ class SubprocVecEnv(VecEnv):
self.waiting = False
self.closed = False
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
ctx = mp.get_context(context)
self.remotes, self.work_remotes = zip(*[ctx.Pipe() for _ in range(nenvs)])
self.ps = [ctx.Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
p.daemon = True # if the main process crashes, we should not cause things to hang
p.start()
with clear_mpi_env_vars():
p.start()
for remote in self.work_remotes:
remote.close()
self.remotes[0].send(('get_spaces', None))
observation_space, action_space = self.remotes[0].recv()
self.remotes[0].send(('get_spaces_spec', None))
observation_space, action_space, self.spec = self.remotes[0].recv()
self.viewer = None
self.specs = [f().spec for f in env_fns]
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
def step_async(self, actions):
@@ -99,16 +102,16 @@ class SubprocVecEnv(VecEnv):
def _assert_not_closed(self):
assert not self.closed, "Trying to operate on a SubprocVecEnv after calling close()"
def __del__(self):
if not self.closed:
self.close()
def _flatten_obs(obs):
assert isinstance(obs, list) or isinstance(obs, tuple)
assert isinstance(obs, (list, tuple))
assert len(obs) > 0
if isinstance(obs[0], dict):
import collections
assert isinstance(obs, collections.OrderedDict)
keys = obs[0].keys()
return {k: np.stack([o[k] for o in obs]) for k in keys}
else:
return np.stack(obs)

View File

@@ -8,39 +8,40 @@ import pytest
from .dummy_vec_env import DummyVecEnv
from .shmem_vec_env import ShmemVecEnv
from .subproc_vec_env import SubprocVecEnv
from baselines.common.tests.test_with_mpi import with_mpi
def assert_envs_equal(env1, env2, num_steps):
def assert_venvs_equal(venv1, venv2, num_steps):
"""
Compare two environments over num_steps steps and make sure
that the observations produced by each are the same when given
the same actions.
"""
assert env1.num_envs == env2.num_envs
assert env1.action_space.shape == env2.action_space.shape
assert env1.action_space.dtype == env2.action_space.dtype
joint_shape = (env1.num_envs,) + env1.action_space.shape
assert venv1.num_envs == venv2.num_envs
assert venv1.observation_space.shape == venv2.observation_space.shape
assert venv1.observation_space.dtype == venv2.observation_space.dtype
assert venv1.action_space.shape == venv2.action_space.shape
assert venv1.action_space.dtype == venv2.action_space.dtype
try:
obs1, obs2 = env1.reset(), env2.reset()
obs1, obs2 = venv1.reset(), venv2.reset()
assert np.array(obs1).shape == np.array(obs2).shape
assert np.array(obs1).shape == joint_shape
assert np.array(obs1).shape == (venv1.num_envs,) + venv1.observation_space.shape
assert np.allclose(obs1, obs2)
np.random.seed(1337)
venv1.action_space.seed(1337)
for _ in range(num_steps):
actions = np.array(np.random.randint(0, 0x100, size=joint_shape),
dtype=env1.action_space.dtype)
for env in [env1, env2]:
env.step_async(actions)
outs1 = env1.step_wait()
outs2 = env2.step_wait()
actions = np.array([venv1.action_space.sample() for _ in range(venv1.num_envs)])
for venv in [venv1, venv2]:
venv.step_async(actions)
outs1 = venv1.step_wait()
outs2 = venv2.step_wait()
for out1, out2 in zip(outs1[:3], outs2[:3]):
assert np.array(out1).shape == np.array(out2).shape
assert np.allclose(out1, out2)
assert list(outs1[3]) == list(outs2[3])
finally:
env1.close()
env2.close()
venv1.close()
venv2.close()
@pytest.mark.parametrize('klass', (ShmemVecEnv, SubprocVecEnv))
@@ -63,7 +64,7 @@ def test_vec_env(klass, dtype): # pylint: disable=R0914
fns = [make_fn(i) for i in range(num_envs)]
env1 = DummyVecEnv(fns)
env2 = klass(fns)
assert_envs_equal(env1, env2, num_steps=num_steps)
assert_venvs_equal(env1, env2, num_steps=num_steps)
class SimpleEnv(gym.Env):
@@ -99,3 +100,15 @@ class SimpleEnv(gym.Env):
def render(self, mode=None):
raise NotImplementedError
@with_mpi()
def test_mpi_with_subprocvecenv():
shape = (2,3,4)
nenv = 1
venv = SubprocVecEnv([lambda: SimpleEnv(0, shape, 'float32')] * nenv)
ob = venv.reset()
venv.close()
assert ob.shape == (nenv,) + shape

View File

@@ -0,0 +1,223 @@
import contextlib
import os
from abc import ABC, abstractmethod
from baselines.common.tile_images import tile_images
class AlreadySteppingError(Exception):
"""
Raised when an asynchronous step is running while
step_async() is called again.
"""
def __init__(self):
msg = 'already running an async step'
Exception.__init__(self, msg)
class NotSteppingError(Exception):
"""
Raised when an asynchronous step is not running but
step_wait() is called.
"""
def __init__(self):
msg = 'not running an async step'
Exception.__init__(self, msg)
class VecEnv(ABC):
"""
An abstract asynchronous, vectorized environment.
Used to batch data from multiple copies of an environment, so that
each observation becomes an batch of observations, and expected action is a batch of actions to
be applied per-environment.
"""
closed = False
viewer = None
metadata = {
'render.modes': ['human', 'rgb_array']
}
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.observation_space = observation_space
self.action_space = action_space
@abstractmethod
def reset(self):
"""
Reset all the environments and return an array of
observations, or a dict of observation arrays.
If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.
"""
pass
@abstractmethod
def step_async(self, actions):
"""
Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.
You should not call this if a step_async run is
already pending.
"""
pass
@abstractmethod
def step_wait(self):
"""
Wait for the step taken with step_async().
Returns (obs, rews, dones, infos):
- obs: an array of observations, or a dict of
arrays of observations.
- rews: an array of rewards
- dones: an array of "episode done" booleans
- infos: a sequence of info objects
"""
pass
def close_extras(self):
"""
Clean up the extra resources, beyond what's in this base class.
Only runs when not self.closed.
"""
pass
def close(self):
if self.closed:
return
if self.viewer is not None:
self.viewer.close()
self.close_extras()
self.closed = True
def step(self, actions):
"""
Step the environments synchronously.
This is available for backwards compatibility.
"""
self.step_async(actions)
return self.step_wait()
def render(self, mode='human'):
imgs = self.get_images()
bigimg = tile_images(imgs)
if mode == 'human':
self.get_viewer().imshow(bigimg)
return self.get_viewer().isopen
elif mode == 'rgb_array':
return bigimg
else:
raise NotImplementedError
def get_images(self):
"""
Return RGB images from each environment
"""
raise NotImplementedError
@property
def unwrapped(self):
if isinstance(self, VecEnvWrapper):
return self.venv.unwrapped
else:
return self
def get_viewer(self):
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.SimpleImageViewer()
return self.viewer
class VecEnvWrapper(VecEnv):
"""
An environment wrapper that applies to an entire batch
of environments at once.
"""
def __init__(self, venv, observation_space=None, action_space=None):
self.venv = venv
super().__init__(num_envs=venv.num_envs,
observation_space=observation_space or venv.observation_space,
action_space=action_space or venv.action_space)
def step_async(self, actions):
self.venv.step_async(actions)
@abstractmethod
def reset(self):
pass
@abstractmethod
def step_wait(self):
pass
def close(self):
return self.venv.close()
def render(self, mode='human'):
return self.venv.render(mode=mode)
def get_images(self):
return self.venv.get_images()
def __getattr__(self, name):
if name.startswith('_'):
raise AttributeError("attempted to get missing private attribute '{}'".format(name))
return getattr(self.venv, name)
class VecEnvObservationWrapper(VecEnvWrapper):
@abstractmethod
def process(self, obs):
pass
def reset(self):
obs = self.venv.reset()
return self.process(obs)
def step_wait(self):
obs, rews, dones, infos = self.venv.step_wait()
return self.process(obs), rews, dones, infos
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)
@contextlib.contextmanager
def clear_mpi_env_vars():
"""
from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang.
This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing
Processes.
"""
removed_environment = {}
for k, v in list(os.environ.items()):
for prefix in ['OMPI_', 'PMI_']:
if k.startswith(prefix):
removed_environment[k] = v
del os.environ[k]
try:
yield
finally:
os.environ.update(removed_environment)

View File

@@ -1,4 +1,4 @@
from . import VecEnvWrapper
from .vec_env import VecEnvWrapper
import numpy as np
from gym import spaces

View File

@@ -2,15 +2,25 @@ from . import VecEnvWrapper
from baselines.bench.monitor import ResultsWriter
import numpy as np
import time
from collections import deque
class VecMonitor(VecEnvWrapper):
def __init__(self, venv, filename=None):
def __init__(self, venv, filename=None, keep_buf=0, info_keywords=()):
VecEnvWrapper.__init__(self, venv)
self.eprets = None
self.eplens = None
self.epcount = 0
self.tstart = time.time()
self.results_writer = ResultsWriter(filename, header={'t_start': self.tstart})
if filename:
self.results_writer = ResultsWriter(filename, header={'t_start': self.tstart},
extra_keys=info_keywords)
else:
self.results_writer = None
self.info_keywords = info_keywords
self.keep_buf = keep_buf
if self.keep_buf:
self.epret_buf = deque([], maxlen=keep_buf)
self.eplen_buf = deque([], maxlen=keep_buf)
def reset(self):
obs = self.venv.reset()
@@ -22,16 +32,24 @@ class VecMonitor(VecEnvWrapper):
obs, rews, dones, infos = self.venv.step_wait()
self.eprets += rews
self.eplens += 1
newinfos = []
for (i, (done, ret, eplen, info)) in enumerate(zip(dones, self.eprets, self.eplens, infos)):
info = info.copy()
if done:
newinfos = list(infos[:])
for i in range(len(dones)):
if dones[i]:
info = infos[i].copy()
ret = self.eprets[i]
eplen = self.eplens[i]
epinfo = {'r': ret, 'l': eplen, 't': round(time.time() - self.tstart, 6)}
for k in self.info_keywords:
epinfo[k] = info[k]
info['episode'] = epinfo
if self.keep_buf:
self.epret_buf.append(ret)
self.eplen_buf.append(eplen)
self.epcount += 1
self.eprets[i] = 0
self.eplens[i] = 0
self.results_writer.write_row(epinfo)
newinfos.append(info)
if self.results_writer:
self.results_writer.write_row(epinfo)
newinfos[i] = info
return obs, rews, dones, newinfos

View File

@@ -1,18 +1,22 @@
from . import VecEnvWrapper
from baselines.common.running_mean_std import RunningMeanStd
import numpy as np
class VecNormalize(VecEnvWrapper):
"""
A vectorized wrapper that normalizes the observations
and returns from an environment.
"""
def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8):
def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8, use_tf=False):
VecEnvWrapper.__init__(self, venv)
self.ob_rms = RunningMeanStd(shape=self.observation_space.shape) if ob else None
self.ret_rms = RunningMeanStd(shape=()) if ret else None
if use_tf:
from baselines.common.running_mean_std import TfRunningMeanStd
self.ob_rms = TfRunningMeanStd(shape=self.observation_space.shape, scope='ob_rms') if ob else None
self.ret_rms = TfRunningMeanStd(shape=(), scope='ret_rms') if ret else None
else:
from baselines.common.running_mean_std import RunningMeanStd
self.ob_rms = RunningMeanStd(shape=self.observation_space.shape) if ob else None
self.ret_rms = RunningMeanStd(shape=()) if ret else None
self.clipob = clipob
self.cliprew = cliprew
self.ret = np.zeros(self.num_envs)

View File

@@ -0,0 +1,10 @@
from .vec_env import VecEnvObservationWrapper
class VecExtractDictObs(VecEnvObservationWrapper):
def __init__(self, venv, key):
self.key = key
super().__init__(venv=venv,
observation_space=venv.observation_space.spaces[self.key])
def process(self, obs):
return obs[self.key]

View File

@@ -0,0 +1,29 @@
import gym
class TimeLimit(gym.Wrapper):
def __init__(self, env, max_episode_steps=None):
super(TimeLimit, self).__init__(env)
self._max_episode_steps = max_episode_steps
self._elapsed_steps = 0
def step(self, ac):
observation, reward, done, info = self.env.step(ac)
self._elapsed_steps += 1
if self._elapsed_steps >= self._max_episode_steps:
done = True
info['TimeLimit.truncated'] = True
return observation, reward, done, info
def reset(self, **kwargs):
self._elapsed_steps = 0
return self.env.reset(**kwargs)
class ClipActionsWrapper(gym.Wrapper):
def step(self, action):
import numpy as np
action = np.nan_to_num(action)
action = np.clip(action, self.action_space.low, self.action_space.high)
return self.env.step(action)
def reset(self, **kwargs):
return self.env.reset(**kwargs)

View File

@@ -217,7 +217,9 @@ def learn(network, env,
stats = agent.get_stats()
combined_stats = stats.copy()
combined_stats['rollout/return'] = np.mean(epoch_episode_rewards)
combined_stats['rollout/return_std'] = np.std(epoch_episode_rewards)
combined_stats['rollout/return_history'] = np.mean(episode_rewards_history)
combined_stats['rollout/return_history_std'] = np.std(episode_rewards_history)
combined_stats['rollout/episode_steps'] = np.mean(epoch_episode_steps)
combined_stats['rollout/actions_mean'] = np.mean(epoch_actions)
combined_stats['rollout/Q_mean'] = np.mean(epoch_qs)

View File

@@ -17,7 +17,7 @@ except ImportError:
def normalize(x, stats):
if stats is None:
return x
return (x - stats.mean) / stats.std
return (x - stats.mean) / (stats.std + 1e-8)
def denormalize(x, stats):

View File

@@ -1,7 +1,6 @@
from baselines.run import main as M
from baselines.common.tests.util import smoketest
def _run(argstr):
M(('--alg=ddpg --env=Pendulum-v0 --num_timesteps=0 ' + argstr).split(' '))
smoketest('--alg=ddpg --env=Pendulum-v0 --num_timesteps=0 ' + argstr)
def test_popart():
_run('--normalize_returns=True --popart=True')

View File

@@ -23,7 +23,7 @@ def model(inpt, num_actions, scope, reuse=False):
if __name__ == '__main__':
with U.make_session(8):
with U.make_session(num_cpu=8):
# Create the environment
env = gym.make("CartPole-v0")
# Create all the functions necessary to train the model

View File

@@ -20,7 +20,7 @@ class TfInput(object):
"""
raise NotImplementedError
def make_feed_dict(data):
def make_feed_dict(self, data):
"""Given data input it to the placeholder(s)."""
raise NotImplementedError

View File

@@ -12,13 +12,13 @@ Download the expert data into `./data`, [download link](https://drive.google.com
### Step 2: Run GAIL
Run with single thread:
Run with single rank:
```bash
python -m baselines.gail.run_mujoco
```
Run with multiple threads:
Run with multiple ranks:
```bash
mpirun -np 16 python -m baselines.gail.run_mujoco

View File

@@ -66,7 +66,7 @@ class TransitionClassifier(object):
with tf.variable_scope("obfilter"):
self.obs_rms = RunningMeanStd(shape=self.observation_shape)
obs = (obs_ph - self.obs_rms.mean / self.obs_rms.std)
obs = (obs_ph - self.obs_rms.mean) / self.obs_rms.std
_input = tf.concat([obs, acs_ph], axis=1) # concatenate the two input -> form a transition
p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh)
p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh)

View File

@@ -50,8 +50,12 @@ class Mujoco_Dset(object):
# obs, acs: shape (N, L, ) + S where N = # episodes, L = episode length
# and S is the environment observation/action space.
# Flatten to (N * L, prod(S))
self.obs = np.reshape(obs, [-1, np.prod(obs.shape[2:])])
self.acs = np.reshape(acs, [-1, np.prod(acs.shape[2:])])
if len(obs.shape) > 2:
self.obs = np.reshape(obs, [-1, np.prod(obs.shape[2:])])
self.acs = np.reshape(acs, [-1, np.prod(acs.shape[2:])])
else:
self.obs = np.vstack(obs)
self.acs = np.vstack(acs)
self.rets = traj_data['ep_rets'][:traj_limitation]
self.avg_ret = sum(self.rets)/len(self.rets)

View File

@@ -108,7 +108,7 @@ def learn(*, network, env, total_timesteps,
# Prepare params.
params = config.DEFAULT_PARAMS
env_name = env.specs[0].id
env_name = env.spec.id
params['env_name'] = env_name
params['replay_strategy'] = replay_strategy
if env_name in config.DEFAULT_ENV_PARAMS:

View File

@@ -7,6 +7,7 @@ import time
import datetime
import tempfile
from collections import defaultdict
from contextlib import contextmanager
DEBUG = 10
INFO = 20
@@ -37,8 +38,8 @@ class HumanOutputFormat(KVWriter, SeqWriter):
# Create strings for printing
key2str = {}
for (key, val) in sorted(kvs.items()):
if isinstance(val, float):
valstr = '%-8.3g' % (val,)
if hasattr(val, '__float__'):
valstr = '%-8.3g' % val
else:
valstr = str(val)
key2str[self._truncate(key)] = self._truncate(valstr)
@@ -68,7 +69,8 @@ class HumanOutputFormat(KVWriter, SeqWriter):
self.file.flush()
def _truncate(self, s):
return s[:20] + '...' if len(s) > 23 else s
maxlen = 30
return s[:maxlen-3] + '...' if len(s) > maxlen else s
def writeseq(self, seq):
seq = list(seq)
@@ -90,7 +92,6 @@ class JSONOutputFormat(KVWriter):
def writekvs(self, kvs):
for k, v in sorted(kvs.items()):
if hasattr(v, 'dtype'):
v = v.tolist()
kvs[k] = float(v)
self.file.write(json.dumps(kvs) + '\n')
self.file.flush()
@@ -195,13 +196,13 @@ def logkv(key, val):
Call this once for each diagnostic quantity, each iteration
If called many times, last value will be used.
"""
Logger.CURRENT.logkv(key, val)
get_current().logkv(key, val)
def logkv_mean(key, val):
"""
The same as logkv(), but if called many times, values averaged.
"""
Logger.CURRENT.logkv_mean(key, val)
get_current().logkv_mean(key, val)
def logkvs(d):
"""
@@ -213,21 +214,18 @@ def logkvs(d):
def dumpkvs():
"""
Write all of the diagnostics from the current iteration
level: int. (see logger.py docs) If the global logger level is higher than
the level argument here, don't print to stdout.
"""
Logger.CURRENT.dumpkvs()
return get_current().dumpkvs()
def getkvs():
return Logger.CURRENT.name2val
return get_current().name2val
def log(*args, level=INFO):
"""
Write the sequence of args, with no separators, to the console and output files (if you've configured an output file).
"""
Logger.CURRENT.log(*args, level=level)
get_current().log(*args, level=level)
def debug(*args):
log(*args, level=DEBUG)
@@ -246,30 +244,29 @@ def set_level(level):
"""
Set logging threshold on current logger.
"""
Logger.CURRENT.set_level(level)
get_current().set_level(level)
def set_comm(comm):
get_current().set_comm(comm)
def get_dir():
"""
Get directory that log files are being written to.
will be None if there is no output directory (i.e., if you didn't call start)
"""
return Logger.CURRENT.get_dir()
return get_current().get_dir()
record_tabular = logkv
dump_tabular = dumpkvs
class ProfileKV:
"""
Usage:
with logger.ProfileKV("interesting_scope"):
code
"""
def __init__(self, n):
self.n = "wait_" + n
def __enter__(self):
self.t1 = time.time()
def __exit__(self ,type, value, traceback):
Logger.CURRENT.name2val[self.n] += time.time() - self.t1
@contextmanager
def profile_kv(scopename):
logkey = 'wait_' + scopename
tstart = time.time()
try:
yield
finally:
get_current().name2val[logkey] += time.time() - tstart
def profile(n):
"""
@@ -279,7 +276,7 @@ def profile(n):
"""
def decorator_with_name(func):
def func_wrapper(*args, **kwargs):
with ProfileKV(n):
with profile_kv(n):
return func(*args, **kwargs)
return func_wrapper
return decorator_with_name
@@ -289,17 +286,25 @@ def profile(n):
# Backend
# ================================================================
def get_current():
if Logger.CURRENT is None:
_configure_default_logger()
return Logger.CURRENT
class Logger(object):
DEFAULT = None # A logger with no output files. (See right below class definition)
# So that you can still log to the terminal without setting up any output files
CURRENT = None # Current logger being used by the free functions above
def __init__(self, dir, output_formats):
def __init__(self, dir, output_formats, comm=None):
self.name2val = defaultdict(float) # values this iteration
self.name2cnt = defaultdict(int)
self.level = INFO
self.dir = dir
self.output_formats = output_formats
self.comm = comm
# Logging API, forwarded
# ----------------------------------------
@@ -307,20 +312,27 @@ class Logger(object):
self.name2val[key] = val
def logkv_mean(self, key, val):
if val is None:
self.name2val[key] = None
return
oldval, cnt = self.name2val[key], self.name2cnt[key]
self.name2val[key] = oldval*cnt/(cnt+1) + val/(cnt+1)
self.name2cnt[key] = cnt + 1
def dumpkvs(self):
if self.level == DISABLED: return
if self.comm is None:
d = self.name2val
else:
from baselines.common import mpi_util
d = mpi_util.mpi_weighted_mean(self.comm,
{name : (val, self.name2cnt.get(name, 1))
for (name, val) in self.name2val.items()})
if self.comm.rank != 0:
d['dummy'] = 1 # so we don't get a warning about empty dict
out = d.copy() # Return the dict for unit testing purposes
for fmt in self.output_formats:
if isinstance(fmt, KVWriter):
fmt.writekvs(self.name2val)
fmt.writekvs(d)
self.name2val.clear()
self.name2cnt.clear()
return out
def log(self, *args, level=INFO):
if self.level <= level:
@@ -331,6 +343,9 @@ class Logger(object):
def set_level(self, level):
self.level = level
def set_comm(self, comm):
self.comm = comm
def get_dir(self):
return self.dir
@@ -345,7 +360,19 @@ class Logger(object):
if isinstance(fmt, SeqWriter):
fmt.writeseq(map(str, args))
def configure(dir=None, format_strs=None):
def get_rank_without_mpi_import():
# check environment variables here instead of importing mpi4py
# to avoid calling MPI_Init() when this module is imported
for varname in ['PMI_RANK', 'OMPI_COMM_WORLD_RANK']:
if varname in os.environ:
return int(os.environ[varname])
return 0
def configure(dir=None, format_strs=None, comm=None, log_suffix=''):
"""
If comm is provided, average all numerical stats across that comm
"""
if dir is None:
dir = os.getenv('OPENAI_LOGDIR')
if dir is None:
@@ -354,15 +381,9 @@ def configure(dir=None, format_strs=None):
assert isinstance(dir, str)
os.makedirs(dir, exist_ok=True)
log_suffix = ''
rank = 0
# check environment variables here instead of importing mpi4py
# to avoid calling MPI_Init() when this module is imported
for varname in ['PMI_RANK', 'OMPI_COMM_WORLD_RANK']:
if varname in os.environ:
rank = int(os.environ[varname])
rank = get_rank_without_mpi_import()
if rank > 0:
log_suffix = "-rank%03i" % rank
log_suffix = log_suffix + "-rank%03i" % rank
if format_strs is None:
if rank == 0:
@@ -372,15 +393,11 @@ def configure(dir=None, format_strs=None):
format_strs = filter(None, format_strs)
output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats)
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm)
log('Logging to %s'%dir)
def _configure_default_logger():
format_strs = None
# keep the old default of only writing to stdout
if 'OPENAI_LOG_FORMAT' not in os.environ:
format_strs = ['stdout']
configure(format_strs=format_strs)
configure()
Logger.DEFAULT = Logger.CURRENT
def reset():
@@ -389,17 +406,15 @@ def reset():
Logger.CURRENT = Logger.DEFAULT
log('Reset logger')
class scoped_configure(object):
def __init__(self, dir=None, format_strs=None):
self.dir = dir
self.format_strs = format_strs
self.prevlogger = None
def __enter__(self):
self.prevlogger = Logger.CURRENT
configure(dir=self.dir, format_strs=self.format_strs)
def __exit__(self, *args):
@contextmanager
def scoped_configure(dir=None, format_strs=None, comm=None):
prevlogger = Logger.CURRENT
configure(dir=dir, format_strs=format_strs, comm=comm)
try:
yield
finally:
Logger.CURRENT.close()
Logger.CURRENT = self.prevlogger
Logger.CURRENT = prevlogger
# ================================================================
@@ -423,7 +438,7 @@ def _demo():
logkv_mean("b", -44.4)
logkv("a", 5.5)
dumpkvs()
info("^^^ should see b = 33.3")
info("^^^ should see b = -33.3")
logkv("b", -2.5)
dumpkvs()
@@ -456,7 +471,6 @@ def read_tb(path):
import pandas
import numpy as np
from glob import glob
from collections import defaultdict
import tensorflow as tf
if osp.isdir(path):
fnames = glob(osp.join(path, "events.*"))
@@ -482,8 +496,5 @@ def read_tb(path):
data[step-1, colidx] = value
return pandas.DataFrame(data, columns=tags)
# configure the default logger on import
_configure_default_logger()
if __name__ == "__main__":
_demo()

View File

@@ -97,7 +97,6 @@ def learn(env, policy_fn, *,
ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return
lrmult = tf.placeholder(name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule
clip_param = clip_param * lrmult # Annealed clipping parameter epsilon
ob = U.get_placeholder_cached(name="ob")
ac = pi.pdtype.sample_placeholder([None])
@@ -168,7 +167,7 @@ def learn(env, policy_fn, *,
ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
vpredbefore = seg["vpred"] # predicted value function before udpate
atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate
d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), shuffle=not pi.recurrent)
d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), deterministic=pi.recurrent)
optim_batchsize = optim_batchsize or ob.shape[0]
if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy

View File

@@ -19,16 +19,17 @@ def train(num_timesteps, seed, model_path=None):
# these are good enough to make humanoid walk, but whether those are
# an absolute best or not is not certain
env = RewScale(env, 0.1)
logger.log("NOTE: reward will be scaled by a factor of 10 in logged stats. Check the monitor for unscaled reward.")
pi = pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.2, entcoeff=0.0,
clip_param=0.1, entcoeff=0.0,
optim_epochs=10,
optim_stepsize=3e-4,
optim_stepsize=1e-4,
optim_batchsize=64,
gamma=0.99,
lam=0.95,
schedule='linear',
schedule='constant',
)
env.close()
if model_path:
@@ -47,7 +48,7 @@ def main():
logger.configure()
parser = mujoco_arg_parser()
parser.add_argument('--model-path', default=os.path.join(logger.get_dir(), 'humanoid_policy'))
parser.set_defaults(num_timesteps=int(2e7))
parser.set_defaults(num_timesteps=int(5e7))
args = parser.parse_args()
@@ -68,8 +69,5 @@ def main():
if done:
ob = env.reset()
if __name__ == '__main__':
main()

View File

@@ -18,7 +18,7 @@ def atari():
lam=0.95, gamma=0.99, noptepochs=4, log_interval=1,
ent_coef=.01,
lr=lambda f : f * 2.5e-4,
cliprange=lambda f : f * 0.1,
cliprange=0.1,
)
def retro():

View File

@@ -8,7 +8,7 @@ class MicrobatchedModel(Model):
on the entire minibatch causes some overflow
"""
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size):
nsteps, ent_coef, vf_coef, max_grad_norm, mpi_rank_weight, comm, microbatch_size):
self.nmicrobatches = nbatch_train // microbatch_size
self.microbatch_size = microbatch_size
@@ -23,7 +23,9 @@ class MicrobatchedModel(Model):
nsteps=nsteps,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm)
max_grad_norm=max_grad_norm,
mpi_rank_weight=mpi_rank_weight,
comm=comm)
self.grads_ph = [tf.placeholder(dtype=g.dtype, shape=g.shape) for g in self.grads]
grads_ph_and_vars = list(zip(self.grads_ph, self.var))

View File

@@ -25,9 +25,12 @@ class Model(object):
- Save load the model
"""
def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
nsteps, ent_coef, vf_coef, max_grad_norm, microbatch_size=None):
nsteps, ent_coef, vf_coef, max_grad_norm, mpi_rank_weight=1, comm=None, microbatch_size=None):
self.sess = sess = get_session()
if MPI is not None and comm is None:
comm = MPI.COMM_WORLD
with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
# CREATE OUR TWO MODELS
# act_model that is used for sampling
@@ -91,8 +94,8 @@ class Model(object):
# 1. Get the model parameters
params = tf.trainable_variables('ppo2_model')
# 2. Build our trainer
if MPI is not None:
self.trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5)
if comm is not None and comm.Get_size() > 1:
self.trainer = MpiAdamOptimizer(comm, learning_rate=LR, mpi_rank_weight=mpi_rank_weight, epsilon=1e-5)
else:
self.trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5)
# 3. Calculate the gradients
@@ -125,7 +128,7 @@ class Model(object):
initialize()
global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="")
if MPI is not None:
sync_from_root(sess, global_variables) #pylint: disable=E1101
sync_from_root(sess, global_variables, comm=comm) #pylint: disable=E1101
def train(self, lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None):
# Here we calculate advantage A(s,a) = R + yV(s') - V(s)

View File

@@ -21,7 +21,7 @@ def constfn(val):
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4,
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
save_interval=0, load_path=None, model_fn=None, **network_kwargs):
save_interval=0, load_path=None, model_fn=None, update_fn=None, init_fn=None, mpi_rank_weight=1, comm=None, **network_kwargs):
'''
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)
@@ -97,6 +97,7 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
# Calculate the batch_size
nbatch = nenvs * nsteps
nbatch_train = nbatch // nminibatches
is_mpi_root = (MPI is None or MPI.COMM_WORLD.Get_rank() == 0)
# Instantiate the model object (that creates act_model and train_model)
if model_fn is None:
@@ -105,7 +106,7 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
max_grad_norm=max_grad_norm)
max_grad_norm=max_grad_norm, comm=comm, mpi_rank_weight=mpi_rank_weight)
if load_path is not None:
model.load(load_path)
@@ -118,24 +119,32 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
if eval_env is not None:
eval_epinfobuf = deque(maxlen=100)
if init_fn is not None:
init_fn()
# Start total timer
tfirststart = time.time()
tfirststart = time.perf_counter()
nupdates = total_timesteps//nbatch
for update in range(1, nupdates+1):
assert nbatch % nminibatches == 0
# Start timer
tstart = time.time()
tstart = time.perf_counter()
frac = 1.0 - (update - 1.0) / nupdates
# Calculate the learning rate
lrnow = lr(frac)
# Calculate the cliprange
cliprangenow = cliprange(frac)
if update % log_interval == 0 and is_mpi_root: logger.info('Stepping environment...')
# Get minibatch
obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() #pylint: disable=E0632
if eval_env is not None:
eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run() #pylint: disable=E0632
if update % log_interval == 0 and is_mpi_root: logger.info('Done.')
epinfobuf.extend(epinfos)
if eval_env is not None:
eval_epinfobuf.extend(eval_epinfos)
@@ -160,7 +169,6 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
envsperbatch = nenvs // nminibatches
envinds = np.arange(nenvs)
flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps)
envsperbatch = nbatch_train // nsteps
for _ in range(noptepochs):
np.random.shuffle(envinds)
for start in range(0, nenvs, envsperbatch):
@@ -174,34 +182,39 @@ def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2
# Feedforward --> get losses --> update
lossvals = np.mean(mblossvals, axis=0)
# End timer
tnow = time.time()
tnow = time.perf_counter()
# Calculate the fps (frame per second)
fps = int(nbatch / (tnow - tstart))
if update_fn is not None:
update_fn(update)
if update % log_interval == 0 or update == 1:
# Calculates if value function is a good predicator of the returns (ev > 1)
# or if it's just worse than predicting nothing (ev =< 0)
ev = explained_variance(values, returns)
logger.logkv("serial_timesteps", update*nsteps)
logger.logkv("nupdates", update)
logger.logkv("total_timesteps", update*nbatch)
logger.logkv("misc/serial_timesteps", update*nsteps)
logger.logkv("misc/nupdates", update)
logger.logkv("misc/total_timesteps", update*nbatch)
logger.logkv("fps", fps)
logger.logkv("explained_variance", float(ev))
logger.logkv("misc/explained_variance", float(ev))
logger.logkv('eprewmean', safemean([epinfo['r'] for epinfo in epinfobuf]))
logger.logkv('eplenmean', safemean([epinfo['l'] for epinfo in epinfobuf]))
if eval_env is not None:
logger.logkv('eval_eprewmean', safemean([epinfo['r'] for epinfo in eval_epinfobuf]) )
logger.logkv('eval_eplenmean', safemean([epinfo['l'] for epinfo in eval_epinfobuf]) )
logger.logkv('time_elapsed', tnow - tfirststart)
logger.logkv('misc/time_elapsed', tnow - tfirststart)
for (lossval, lossname) in zip(lossvals, model.loss_names):
logger.logkv(lossname, lossval)
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
logger.dumpkvs()
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and (MPI is None or MPI.COMM_WORLD.Get_rank() == 0):
logger.logkv('loss/' + lossname, lossval)
logger.dumpkvs()
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and is_mpi_root:
checkdir = osp.join(logger.get_dir(), 'checkpoints')
os.makedirs(checkdir, exist_ok=True)
savepath = osp.join(checkdir, '%.5i'%update)
print('Saving to', savepath)
model.save(savepath)
return model
# Avoid division error when calculate the mean (in our case if epinfo is empty returns np.nan, not return an error)
def safemean(xs):

View File

@@ -25,10 +25,11 @@ def test_microbatches():
env_test = DummyVecEnv([env_fn])
sess_test = make_session(make_default=True, graph=tf.Graph())
learn_fn(env=env_test, model_fn=partial(MicrobatchedModel, microbatch_size=2))
# learn_fn(env=env_test)
vars_test = {v.name: sess_test.run(v) for v in tf.trainable_variables()}
for v in vars_ref:
np.testing.assert_allclose(vars_ref[v], vars_test[v], atol=1e-3)
np.testing.assert_allclose(vars_ref[v], vars_test[v], atol=3e-3)
if __name__ == '__main__':
test_microbatches()

View File

@@ -1,4 +1,5 @@
import sys
import re
import multiprocessing
import os.path as osp
import gym
@@ -6,15 +7,13 @@ from collections import defaultdict
import tensorflow as tf
import numpy as np
from baselines.common.vec_env import VecFrameStack, VecNormalize, VecEnv
from baselines.common.vec_env.vec_video_recorder import VecVideoRecorder
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.common.cmd_util import common_arg_parser, parse_unknown_args, make_vec_env, make_env
from baselines.common.tf_util import get_session
from baselines import logger
from importlib import import_module
from baselines.common.vec_env.vec_normalize import VecNormalize
try:
from mpi4py import MPI
except ImportError:
@@ -52,7 +51,7 @@ _game_envs['retro'] = {
def train(args, extra_args):
env_type, env_id = get_env_type(args.env)
env_type, env_id = get_env_type(args)
print('env_type: {}'.format(env_type))
total_timesteps = int(args.num_timesteps)
@@ -64,7 +63,7 @@ def train(args, extra_args):
env = build_env(args)
if args.save_video_interval != 0:
env = VecVideoRecorder(env, osp.join(logger.Logger.CURRENT.dir, "videos"), record_video_trigger=lambda x: x % args.save_video_interval == 0, video_length=args.save_video_length)
env = VecVideoRecorder(env, osp.join(logger.get_dir(), "videos"), record_video_trigger=lambda x: x % args.save_video_interval == 0, video_length=args.save_video_length)
if args.network:
alg_kwargs['network'] = args.network
@@ -91,7 +90,7 @@ def build_env(args):
alg = args.alg
seed = args.seed
env_type, env_id = get_env_type(args.env)
env_type, env_id = get_env_type(args)
if env_type in {'atari', 'retro'}:
if alg == 'deepq':
@@ -104,22 +103,27 @@ def build_env(args):
env = VecFrameStack(env, frame_stack_size)
else:
config = tf.ConfigProto(allow_soft_placement=True,
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
get_session(config=config)
config.gpu_options.allow_growth = True
get_session(config=config)
flatten_dict_observations = alg not in {'her'}
env = make_vec_env(env_id, env_type, args.num_env or 1, seed, reward_scale=args.reward_scale, flatten_dict_observations=flatten_dict_observations)
flatten_dict_observations = alg not in {'her'}
env = make_vec_env(env_id, env_type, args.num_env or 1, seed, reward_scale=args.reward_scale, flatten_dict_observations=flatten_dict_observations)
if env_type == 'mujoco':
env = VecNormalize(env)
if env_type == 'mujoco':
env = VecNormalize(env, use_tf=True)
return env
def get_env_type(env_id):
def get_env_type(args):
env_id = args.env
if args.env_type is not None:
return args.env_type, env_id
# Re-parse the gym registry, since we could have new envs since last time.
for env in gym.envs.registry.all():
env_type = env._entry_point.split(':')[0].split('.')[-1]
@@ -134,6 +138,8 @@ def get_env_type(env_id):
if env_id in e:
env_type = g
break
if ':' in env_id:
env_type = re.sub(r':.*', '', env_id)
assert env_type is not None, 'env_id {} is not recognized in env types'.format(env_id, _game_envs.keys())
return env_type, env_id
@@ -194,9 +200,6 @@ def main(args):
args, unknown_args = arg_parser.parse_known_args(args)
extra_args = parse_cmdline_kwargs(unknown_args)
if args.extra_import is not None:
import_module(args.extra_import)
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
rank = 0
logger.configure()
@@ -205,7 +208,6 @@ def main(args):
rank = MPI.COMM_WORLD.Get_rank()
model, env = train(args, extra_args)
env.close()
if args.save_path is not None and rank == 0:
save_path = osp.expanduser(args.save_path)
@@ -213,26 +215,28 @@ def main(args):
if args.play:
logger.log("Running trained model")
env = build_env(args)
obs = env.reset()
state = model.initial_state if hasattr(model, 'initial_state') else None
dones = np.zeros((1,))
episode_rew = 0
while True:
if state is not None:
actions, _, state, _ = model.step(obs,S=state, M=dones)
else:
actions, _, _, _ = model.step(obs)
obs, _, done, _ = env.step(actions)
obs, rew, done, _ = env.step(actions)
episode_rew += rew[0] if isinstance(env, VecEnv) else rew
env.render()
done = done.any() if isinstance(done, np.ndarray) else done
if done:
print('episode_rew={}'.format(episode_rew))
episode_rew = 0
obs = env.reset()
env.close()
env.close()
return model

View File

@@ -120,7 +120,7 @@
<td>114.26</td>
<td>cbd21ef</td>
<td><a href=https://github.com/openai/baselines/commit/7bfbcf177eca8f46c0c0bfbb378e044539f5e061>7bfbcf1</a></td>
</tr>
@@ -152,7 +152,7 @@
<td>131.46</td>
<td>cbd21ef</td>
<td><a href=https://github.com/openai/baselines/commit/7bfbcf177eca8f46c0c0bfbb378e044539f5e061>7bfbcf1</a></td>
</tr>
@@ -184,7 +184,7 @@
<td>113.58</td>
<td>cbd21ef</td>
<td><a href=https://github.com/openai/baselines/commit/7bfbcf177eca8f46c0c0bfbb378e044539f5e061>7bfbcf1</a></td>
</tr>
@@ -216,7 +216,7 @@
<td>82.94</td>
<td>cbd21ef</td>
<td><a href=https://github.com/openai/baselines/commit/7bfbcf177eca8f46c0c0bfbb378e044539f5e061>7bfbcf1</a></td>
</tr>
@@ -248,7 +248,7 @@
<td>81.61</td>
<td>cbd21ef</td>
<td><a href=https://github.com/openai/baselines/commit/7bfbcf177eca8f46c0c0bfbb378e044539f5e061>7bfbcf1</a></td>
</tr>
@@ -280,7 +280,7 @@
<td>59.72</td>
<td>cbd21ef</td>
<td><a href=https://github.com/openai/baselines/commit/7bfbcf177eca8f46c0c0bfbb378e044539f5e061>7bfbcf1</a></td>
</tr>
@@ -312,7 +312,7 @@
<td>14.98</td>
<td>cbd21ef</td>
<td><a href=https://github.com/openai/baselines/commit/7bfbcf177eca8f46c0c0bfbb378e044539f5e061>7bfbcf1</a></td>
</tr>

View File

@@ -12,10 +12,9 @@ extras = {
'filelock',
'pytest',
'pytest-forked',
'atari-py'
],
'bullet': [
'pybullet',
'atari-py',
'matplotlib',
'pandas'
],
'mpi': [
'mpi4py'
@@ -32,12 +31,10 @@ setup(name='baselines',
packages=[package for package in find_packages()
if package.startswith('baselines')],
install_requires=[
'gym',
'gym>=0.10.0, <1.0.0',
'scipy',
'tqdm',
'joblib',
'dill',
'progressbar2',
'cloudpickle',
'click',
'opencv-python'