John Schulman 370ee27750 1.5 months of codegen changes (#196)
* play with resnet

* feed_dict version

* coinrun prob and more stats

* fixes to get_choices_specs & hp search

* minor prob fixes

* minor fixes

* minor

* alternative version of rl_algo stuff

* pylint fixes

* fix bugs, move node_filters to soup

* changed how get_algo works

* change how get_algo works, probably broke all tests

* continue previous refactor

* get eval_agent running again

* fixing tests

* fix tests

* fix more tests

* clean up cma stuff

* fix experiment

* minor changes to eval_agent to make ppo_metal use gpu

* make dict space work

* modify mac makefile to use conda

* recurrent layers

* play with bn and resnets

* minor hp changes

* minor

* got rid of use_fb argument and jtft (joint-train-fine-tune) functionality
built test phase directly into AlgoProb

* make new rl algos generateable

* pylint; start fixing tests

* fixing tests

* more test fixes

* pylint

* fix search

* work on search

* hack around infinite loop caused by scan

* algo search fixes

* misc changes for search expt

* enable annealing, overriding options of Op

* pylint fixes

* identity op

* achieve use_last_output through masking so it automatically works in other distributions

* fix tests

* minor

* discrete

* use_last_output to be just a preference, not a hard constraint

* pred delay, pruning

* require nontrivial inputs

* aliases for get_sm

* add probname to probs

* fixes

* small fixes

* fix tests

* fix tests

* fix tests

* minor

* test scripts

* dualgru network improvements

* minor

* work on mysterious bugs

* rcall gpu-usage command for kube

* use cache dir that’s not in code folder, so that it doesn’t get removed by rcall code rsync

* add power mode to gpu usage

* make sure train/test actually different

* remove VR for now

* minor fixes

* simplify soln_db

* minor

* big refactor of mpi eda

* improve mpieda for multitask

* - get rid of timelimit hack
- add __del__ to cleanup SubprocVecEnv

* get multitask working better

* fixes

* working on atari, various

* annotate ops with whether they’re parametrized

* minor

* gym version

* rand atari prob

* minor

* SolnDb bugfix and name change

* pyspy script

* switch conv layers

* fix roboschool/bullet3

* nenvs assertion

* fix rand atari

* get rid of blanket exception catching
fix soln_db bug

* fix rand_atari

* dynamic routing as cmdline arg

* slight modifications to test_mpi_map and pyspy-all

* max_tries argument for run_until_successs

* dedup option in train_mle

* simplify soln_db

* increase atari horizon for 1 experiment

* start implementing reward increment

* ent multiplier

* create cc dsl
other misc fixes

* cc ops

* q_func -> qs in rl_algos_cc.py

* fix PredictDistr

* rl_ops_cc fixes, MakeAction op

* augment algo agent to support cc stuff

* work on ddpg experiments

* fix blocking
temporarily change logger

* allow layer scaling

* pylint fixes

* spawn_method

* isolate ddpg hacks

* improve pruning

* use spawn for subproc

* remove use of python -c in rcall

* fix pylint warning

* fix static

* maybe fix local backend

* switch to DummyVecEnv

* making some fixes via pylint

* pylint fixes

* fixing tests

* fix tests

* fix tests

* write scaffolding for SSL in Codegen

* logger fix

* fix error

* add EMA op to sl_ops

* save many changes

* save

* add upsampler

* add sl ops, enhance state machine

* get ssl search working — some gross hacking

* fix session/graph issue

* fix importing

* work on mle

* - scale embeddings in gru model
- better exception handling in sl_prob
- use emas for test/val
- use non-contrib batch_norm layer

* improve logging

* option to average before dumping in logger

* default arguments, etc

* new ddpg and identity test

* concat fix

* minor

* move realistic ssl stuff to third-party (underscore to dash)

* fixes

* remove realistic_ssl_evaluation

* pylint fixes

* use gym master

* try again

* pass around args without gin

* fix tests

* separate line to install gym

* rename failing tests that should be ignored

* add data aug

* ssl improvements

* use fixed time limit

* try to fix baselines tests

* add score_floor, max_walltime, fiddle with lr decay

* realistic_ssl

* autopep8

* various ssl
- enable blocking grad for simplification
- kl
- multiple final prediction

* fix pruning

* misc ssl stuff

* bring back linear schedule, don’t use allgather for collecting stats
(i’ve been getting nondeterministic errors from the old code)

* save/load weights in SSL, big stepsize

* cleanup SslProb

* fix

* get rid of kl coef

* fix simplification, lower lr

* search over hps

* minor fixes

* minor

* static analysis

* move files and rename things for improved consistency.
still broken, and just saving before making nontrivial changes

* various

* make tests pass

* move coinrun_train to codegen since it depends on codegen

* fixes

* pylint fixes

* improve tests
fix some things

* improve tests

* lint

* fix up db_info.py, tests

* mostly restore master version of envs directory, except for makefile changes

* fix tests

* improve printing

* minor fixes

* fix fixmes

* pruning test

* fixes

* lint

* write new test that makes tf graphs of random algos; fix some bugs it caught

* add —delete flag to rcall upload-code command

* lint

* get cifar10 lazily for testing purposes

* disable codegen ci tests for now

* clean up rl_ops

* rename spec classes

* td3 with identity test

* identity tests without gin files

* remove gin.configurable from AlgoAgent

* comments about reduction in rl_ops_cc

* address @pzhokhov comments

* fix tests

* more linting

* better tests

* clean up filtering a bit

* fix concat
2019-01-24 14:29:35 -08:00
2018-11-07 17:20:52 -08:00
2018-11-06 17:02:20 -08:00
2018-11-05 14:32:17 -08:00
2017-05-24 02:34:20 -07:00
2018-11-21 14:57:10 -08:00
2018-12-19 14:44:08 -08:00
2018-12-21 12:47:48 -08:00

Status: Active (under active development, breaking changes may occur)

Build status

Baselines

OpenAI Baselines is a set of high-quality implementations of reinforcement learning algorithms.

These algorithms will make it easier for the research community to replicate, refine, and identify new ideas, and will create good baselines to build research on top of. Our DQN implementation and its variants are roughly on par with the scores in published papers. We expect they will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones.

Prerequisites

Baselines requires python3 (>=3.5) with the development headers. You'll also need system packages CMake, OpenMPI and zlib. Those can be installed as follows

Ubuntu

sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev

Mac OS X

Installation of system packages on Mac requires Homebrew. With Homebrew installed, run the following:

brew install cmake openmpi

Virtual environment

From the general python package sanity perspective, it is a good idea to use virtual environments (virtualenvs) to make sure packages from different projects do not interfere with each other. You can install virtualenv (which is itself a pip package) via

pip install virtualenv

Virtualenvs are essentially folders that have copies of python executable and all python packages. To create a virtualenv called venv with python3, one runs

virtualenv /path/to/venv --python=python3

To activate a virtualenv:

. /path/to/venv/bin/activate

More thorough tutorial on virtualenvs and options can be found here

Installation

  • Clone the repo and cd into it:

    git clone https://github.com/openai/baselines.git
    cd baselines
    
  • If you don't have TensorFlow installed already, install your favourite flavor of TensorFlow. In most cases,

    pip install tensorflow-gpu # if you have a CUDA-compatible gpu and proper drivers
    

    or

    pip install tensorflow
    

    should be sufficient. Refer to TensorFlow installation guide for more details.

  • Install baselines package

    pip install -e .
    

MuJoCo

Some of the baselines examples use MuJoCo (multi-joint dynamics in contact) physics simulator, which is proprietary and requires binaries and a license (temporary 30-day license can be obtained from www.mujoco.org). Instructions on setting up MuJoCo can be found here

Testing the installation

All unit tests in baselines can be run using pytest runner:

pip install pytest
pytest

Training models

Most of the algorithms in baselines repo are used as follows:

python -m baselines.run --alg=<name of the algorithm> --env=<environment_id> [additional arguments]

Example 1. PPO with MuJoCo Humanoid

For instance, to train a fully-connected network controlling MuJoCo humanoid using PPO2 for 20M timesteps

python -m baselines.run --alg=ppo2 --env=Humanoid-v2 --network=mlp --num_timesteps=2e7

Note that for mujoco environments fully-connected network is default, so we can omit --network=mlp The hyperparameters for both network and the learning algorithm can be controlled via the command line, for instance:

python -m baselines.run --alg=ppo2 --env=Humanoid-v2 --network=mlp --num_timesteps=2e7 --ent_coef=0.1 --num_hidden=32 --num_layers=3 --value_network=copy

will set entropy coefficient to 0.1, and construct fully connected network with 3 layers with 32 hidden units in each, and create a separate network for value function estimation (so that its parameters are not shared with the policy network, but the structure is the same)

See docstrings in common/models.py for description of network parameters for each type of model, and docstring for baselines/ppo2/ppo2.py/learn() for the description of the ppo2 hyperparamters.

Example 2. DQN on Atari

DQN with Atari is at this point a classics of benchmarks. To run the baselines implementation of DQN on Atari Pong:

python -m baselines.run --alg=deepq --env=PongNoFrameskip-v4 --num_timesteps=1e6

Saving, loading and visualizing models

The algorithms serialization API is not properly unified yet; however, there is a simple method to save / restore trained models. --save_path and --load_path command-line option loads the tensorflow state from a given path before training, and saves it after the training, respectively. Let's imagine you'd like to train ppo2 on Atari Pong, save the model and then later visualize what has it learnt.

python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=2e7 --save_path=~/models/pong_20M_ppo2

This should get to the mean reward per episode about 20. To load and visualize the model, we'll do the following - load the model, train it for 0 steps, and then visualize:

python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=0 --load_path=~/models/pong_20M_ppo2 --play

NOTE: At the moment Mujoco training uses VecNormalize wrapper for the environment which is not being saved correctly; so loading the models trained on Mujoco will not work well if the environment is recreated. If necessary, you can work around that by replacing RunningMeanStd by TfRunningMeanStd in baselines/common/vec_env/vec_normalize.py. This way, mean and std of environment normalizing wrapper will be saved in tensorflow variables and included in the model file; however, training is slower that way - hence not including it by default

Loading and vizualizing learning curves and other training metrics

See here for instructions on how to load and display the training data.

Subpackages

Benchmarks

Results of benchmarks on Mujoco (1M timesteps) and Atari (10M timesteps) are available here for Mujoco and here for Atari respectively. Note that these results may be not on the latest version of the code, particular commit hash with which results were obtained is specified on the benchmarks page.

To cite this repository in publications:

@misc{baselines,
  author = {Dhariwal, Prafulla and Hesse, Christopher and Klimov, Oleg and Nichol, Alex and Plappert, Matthias and Radford, Alec and Schulman, John and Sidor, Szymon and Wu, Yuhuai and Zhokhov, Peter},
  title = {OpenAI Baselines},
  year = {2017},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/openai/baselines}},
}
Description
OpenAI Baselines: high-quality implementations of reinforcement learning algorithms
Readme 16 MiB
Languages
Python 51.5%
HTML 48.5%