Compare commits

..

27 Commits

Author SHA1 Message Date
Peter Zhokhov
8d9e20fec3 narrow down gym version to 0.15.4 <= gym < 0.16.0 2019-11-10 11:08:59 -08:00
Peter Zhokhov
fc23c78c77 fix imports 2019-11-08 15:39:57 -08:00
Peter Zhokhov
25f750d84f update to use latest version of gym 2019-11-08 15:31:40 -08:00
Tomasz Wrona
391811d98c SubprocVecEnv uses CloudpickleWrapper to send specs (#1028) 2019-11-08 15:23:49 -08:00
Yen-Chen Lin
665b888eeb Fix behavior cloning due to API changes (#1014) 2019-10-25 15:44:43 -07:00
Christopher Hesse
f40a477a17 fix tf2 branch name 2019-10-25 15:27:30 -07:00
johannespitz
c6144bdb6a Fix RuntimeError (#910) (#1015)
* Update the commands to install Tensorflow

The current 'tensorflow' package is for Tensorflow 2, which is not supported by the master branch of baselines.

* Update command to install Tensorflow 1.14

* Fix RuntimeError (#910)

 - Removed interfering calls to env.reset() in play mode.
   (Note that the worker in the subprocess is calling env.reset() already)

 - Fixed the printed reward when running multiple envs in play mode.
2019-10-25 15:24:41 -07:00
Peter Zhokhov
adba88b218 add quote marks to tensorflow < 2 to avoid bash logic 2019-10-11 17:13:43 -07:00
Peter Zhokhov
bfbc3bae14 update status, fix the tensorflow version in the build 2019-10-11 15:23:14 -07:00
Haiyang Chen
f703776c91 fix a bug in acer saving and loading model (#990) 2019-09-27 15:39:41 -07:00
pzhokhov
53797293e5 use allreduce instead of Allreduce (send pickled data instead of floats) - probably affects performance somewhat, but avoid element number mismatch. Fixes 998 (#1000) 2019-09-27 14:45:31 -07:00
tanzhenyu
229a772b81 Release notes for Tensorflow 2.0 support. (#997) 2019-08-29 14:25:44 -07:00
Tomasz Wrona
d80b075904 Make SubprocVecEnv works with DummyVecEnv (#908)
* Make SubprocVecEnv works with DummyVecEnv (nested environments for synchronous sampling)

* SubprocVecEnv now supports running environments in series in each process

* Added docstring to the test definition

* Added additional test to check, whether SubprocVecEnv results with the same output when in_series parameter is enabled and not

* Added more test cases for in_series parameter

* Refactored worker function, added docstring for in_series parameter

* Remove check for TF presence in setup.py
2019-08-29 12:16:25 -07:00
NicoBach
0182fe1877 entrypoint variable made public (#970) 2019-08-06 02:03:19 +03:00
Seungjae Ryan Lee
1fb4dfb780 Fix typo in GAIL dataset log (#950) 2019-08-06 02:02:43 +03:00
Timo Kaufmann
7cadef715f Fix typo (#930)
* Fix typo

* Fix train_freq documentation

Seems to be a copy-paste error, train_freq has nothing to do with
printing.

* Fix documentation typo
2019-08-06 02:02:21 +03:00
tanzhenyu
fce4370ba2 Remove duplicate code in adaptive param noise. (#976) 2019-08-06 02:01:54 +03:00
tanzhenyu
c57528573e Remove model def from deepq. (#946) 2019-06-27 10:12:38 -07:00
Marcin Michalski
2bca7901f5 Updating the version to 0.1.6 (#933)
Updating the version in setup.py to avoid conflict with the old (>1 year old) version in pypi.
2019-06-24 10:19:01 -07:00
albert
ba2b017820 add log_path flag to command line utility (#917)
* add log_path flag to command line utility

* Update README with log_path flag

* clarify logg and viz docs
2019-06-07 15:05:52 -07:00
Anton Grigoryev
7c520852d9 Fix converting list of LazyFrames to ndarray (#907) 2019-05-31 16:49:46 -07:00
pzhokhov
1c872ca8fd run test_monitor through pytest; fix the test, add flake8 to bench direectory - like PR 891 (#921) 2019-05-31 15:36:20 -07:00
Jinho Lee
ff8d36a7a7 Starting to reassign waiting_step in shmem_vecenv (#915)
"self.waiting_step" is initialized in __init__ function but it is not reassigned anywhere.
Because it is used in reset function and close_extras function, it should be fixed.
So i fixed it to be similar with subproc_vec_env's one.
2019-05-31 14:31:35 -07:00
Sridhar Thiagarajan
7614b02f7a remove f strings for python back compatibility (#906) 2019-05-31 14:27:11 -07:00
Andy Twigg
f7d5a265e1 suppress excessive messages from unused loggers (#920)
Only print the "logging to [dir]" message when the logger has something to output. Running with the new spawn change and both mpi and subprocvecenv, there are many "logging to [dir]" messages but most are not logging anything.
2019-05-31 14:26:45 -07:00
Joshua Meier
21776e8f57 Support Tuple observation spaces (#911) 2019-05-31 14:06:20 -07:00
pzhokhov
9b68103b73 release Internal changes (#895)
* joshim5 changes (width and height to WarpFrame wrapper)

* match network output with action distribution via a linear layer only if necessary (#167)

* support color vs. grayscale option in WarpFrame wrapper (#166)

* support color vs. grayscale option in WarpFrame wrapper

* Support color in other wrappers

* Updated per Peters suggestions

* fixing test failures

* ppo2 with microbatches (#168)

* pass microbatch_size to the model during construction

* microbatch fixes and test (#169)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* Peterz joshim5 subclass ppo2 model (#170)

* microbatch fixes and test

* tiny cleanup

* added assertions to the test

* vpg-related fix

* subclassing the model to make microbatched version of model WIP

* made microbatched model a subclass of ppo2 Model

* flake8 complaint

* mpi-less ppo2 (resolving merge conflict)

* flake8 and mpi4py imports in ppo2/model.py

* more un-mpying

* merge master

* updates to the benchmark viewer code + autopep8 (#184)

* viz docs and syntactic sugar wip

* update viewer yaml to use persistent volume claims

* move plot_util to baselines.common, update links

* use 1Tb hard drive for results viewer

* small updates to benchmark vizualizer code

* autopep8

* autopep8

* any folder can be a benchmark

* massage games image a little bit

* fixed --preload option in app.py

* remove preload from run_viewer.sh

* remove pdb breakpoints

* update bench-viewer.yaml

* fixed bug (#185)

* fixed bug 

it's wrong to do the else statement, because no other nodes would start.

* changed the fix slightly

* Refactor her phase 1 (#194)

* add monitor to the rollout envs in her RUN BENCHMARKS her

* Slice -> Slide in her benchmarks RUN BENCHMARKS her

* run her benchmark for 200 epochs

* dummy commit to RUN BENCHMARKS her

* her benchmark for 500 epochs RUN BENCHMARKS her

* add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her

* add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her

* add num_timesteps to her benchmark to be compatible with viewer RUN BENCHMARKS her

* disable saving of policies in her benchmark RUN BENCHMARKS her

* run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch

* run fetch benchmarks with ppo2 and ddpg RUN BENCHMARKS Fetch

* launcher refactor wip

* wip

* her works on FetchReach

* her runner refactor RUN BENCHMARKS Fetch1M

* unit test for her

* fixing warnings in mpi_average in her, skip test_fetchreach if mujoco is not present

* pickle-based serialization in her

* remove extra import from subproc_vec_env.py

* investigating differences in rollout.py

* try with old rollout code RUN BENCHMARKS her

* temporarily use DummyVecEnv in cmd_util.py RUN BENCHMARKS her

* dummy commit to RUN BENCHMARKS her

* set info_values in rollout worker in her RUN BENCHMARKS her

* bug in rollout_new.py RUN BENCHMARKS her

* fixed bug in rollout_new.py RUN BENCHMARKS her

* do not use last step because vecenv calls reset and returns obs after reset RUN BENCHMARKS her

* updated buffer sizes RUN BENCHMARKS her

* fixed loading/saving via joblib

* dust off learning from demonstrations in HER, docs, refactor

* add deprecation notice on her play and plot files

* address comments by Matthias

* 1.5 months of codegen changes (#196)

* play with resnet

* feed_dict version

* coinrun prob and more stats

* fixes to get_choices_specs & hp search

* minor prob fixes

* minor fixes

* minor

* alternative version of rl_algo stuff

* pylint fixes

* fix bugs, move node_filters to soup

* changed how get_algo works

* change how get_algo works, probably broke all tests

* continue previous refactor

* get eval_agent running again

* fixing tests

* fix tests

* fix more tests

* clean up cma stuff

* fix experiment

* minor changes to eval_agent to make ppo_metal use gpu

* make dict space work

* modify mac makefile to use conda

* recurrent layers

* play with bn and resnets

* minor hp changes

* minor

* got rid of use_fb argument and jtft (joint-train-fine-tune) functionality
built test phase directly into AlgoProb

* make new rl algos generateable

* pylint; start fixing tests

* fixing tests

* more test fixes

* pylint

* fix search

* work on search

* hack around infinite loop caused by scan

* algo search fixes

* misc changes for search expt

* enable annealing, overriding options of Op

* pylint fixes

* identity op

* achieve use_last_output through masking so it automatically works in other distributions

* fix tests

* minor

* discrete

* use_last_output to be just a preference, not a hard constraint

* pred delay, pruning

* require nontrivial inputs

* aliases for get_sm

* add probname to probs

* fixes

* small fixes

* fix tests

* fix tests

* fix tests

* minor

* test scripts

* dualgru network improvements

* minor

* work on mysterious bugs

* rcall gpu-usage command for kube

* use cache dir that’s not in code folder, so that it doesn’t get removed by rcall code rsync

* add power mode to gpu usage

* make sure train/test actually different

* remove VR for now

* minor fixes

* simplify soln_db

* minor

* big refactor of mpi eda

* improve mpieda for multitask

* - get rid of timelimit hack
- add __del__ to cleanup SubprocVecEnv

* get multitask working better

* fixes

* working on atari, various

* annotate ops with whether they’re parametrized

* minor

* gym version

* rand atari prob

* minor

* SolnDb bugfix and name change

* pyspy script

* switch conv layers

* fix roboschool/bullet3

* nenvs assertion

* fix rand atari

* get rid of blanket exception catching
fix soln_db bug

* fix rand_atari

* dynamic routing as cmdline arg

* slight modifications to test_mpi_map and pyspy-all

* max_tries argument for run_until_successs

* dedup option in train_mle

* simplify soln_db

* increase atari horizon for 1 experiment

* start implementing reward increment

* ent multiplier

* create cc dsl
other misc fixes

* cc ops

* q_func -> qs in rl_algos_cc.py

* fix PredictDistr

* rl_ops_cc fixes, MakeAction op

* augment algo agent to support cc stuff

* work on ddpg experiments

* fix blocking
temporarily change logger

* allow layer scaling

* pylint fixes

* spawn_method

* isolate ddpg hacks

* improve pruning

* use spawn for subproc

* remove use of python -c in rcall

* fix pylint warning

* fix static

* maybe fix local backend

* switch to DummyVecEnv

* making some fixes via pylint

* pylint fixes

* fixing tests

* fix tests

* fix tests

* write scaffolding for SSL in Codegen

* logger fix

* fix error

* add EMA op to sl_ops

* save many changes

* save

* add upsampler

* add sl ops, enhance state machine

* get ssl search working — some gross hacking

* fix session/graph issue

* fix importing

* work on mle

* - scale embeddings in gru model
- better exception handling in sl_prob
- use emas for test/val
- use non-contrib batch_norm layer

* improve logging

* option to average before dumping in logger

* default arguments, etc

* new ddpg and identity test

* concat fix

* minor

* move realistic ssl stuff to third-party (underscore to dash)

* fixes

* remove realistic_ssl_evaluation

* pylint fixes

* use gym master

* try again

* pass around args without gin

* fix tests

* separate line to install gym

* rename failing tests that should be ignored

* add data aug

* ssl improvements

* use fixed time limit

* try to fix baselines tests

* add score_floor, max_walltime, fiddle with lr decay

* realistic_ssl

* autopep8

* various ssl
- enable blocking grad for simplification
- kl
- multiple final prediction

* fix pruning

* misc ssl stuff

* bring back linear schedule, don’t use allgather for collecting stats
(i’ve been getting nondeterministic errors from the old code)

* save/load weights in SSL, big stepsize

* cleanup SslProb

* fix

* get rid of kl coef

* fix simplification, lower lr

* search over hps

* minor fixes

* minor

* static analysis

* move files and rename things for improved consistency.
still broken, and just saving before making nontrivial changes

* various

* make tests pass

* move coinrun_train to codegen since it depends on codegen

* fixes

* pylint fixes

* improve tests
fix some things

* improve tests

* lint

* fix up db_info.py, tests

* mostly restore master version of envs directory, except for makefile changes

* fix tests

* improve printing

* minor fixes

* fix fixmes

* pruning test

* fixes

* lint

* write new test that makes tf graphs of random algos; fix some bugs it caught

* add —delete flag to rcall upload-code command

* lint

* get cifar10 lazily for testing purposes

* disable codegen ci tests for now

* clean up rl_ops

* rename spec classes

* td3 with identity test

* identity tests without gin files

* remove gin.configurable from AlgoAgent

* comments about reduction in rl_ops_cc

* address @pzhokhov comments

* fix tests

* more linting

* better tests

* clean up filtering a bit

* fix concat

* delayed logger configuration (#208)

* delayed logger configuration

* fix typo

* setters and getters for Logger.DEFAULT as well

* do away with fancy property stuff - unable to get it to work with class level methods

* grammar and spaces

* spaces

* use get_current function instead of reading Logger.CURRENT

* autopep8

* disable mpi in subprocesses (#213)

* lazy_mpi load

* cleanups

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* silly recursion

* try os.environ hack

* better prefix test, work with mpich

* restored MPI imports

* removed commented import in test_with_mpi

* restored codegen from master

* remove lazy mpi

* restored changes from rl-algs

* remove extra files

* address Chris' comments

* use spawn for shmem vec env as well (#2) (#219)

* lazy_mpi load

* cleanups

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* silly recursion

* try os.environ hack

* better prefix test, work with mpich

* restored MPI imports

* removed commented import in test_with_mpi

* restored codegen from master

* remove lazy mpi

* restored changes from rl-algs

* remove extra files

* port mpi fix to shmem vec env

* increase the mpi test default timeout

* change humanoid hyperparameters, get rid of clip_Frac annealing, as it's apparently dangerous

* remove clip_frac schedule from ppo2

* more timesteps in humanoid run

* whitespace + RUN BENCHMARKS

* baselines: export vecenvs from folder (#221)

* baselines: export vecenvs from folder

* put missing function back in

* add missing imports

* more imports

* longer mpi timeout?

* make default logger configuration the same as call to logger.configure() (#222)

* Vecenv refactor (#223)

* update karl util

* restore pvi flag

* change rcall auto cpu behavior, move gin.configurable, add os.makedirs

* vecenv refactor

* aux buf index fix

* add num aux obs

* reset level with enter

* restore high difficulty flag

* bugfix

* restore train_coinrun.py

* tweaks

* renaming

* renaming

* better arguments handling

* more options

* options cleanup

* game data refactor

* more options

* args for train_procgen

* add close handler to interactive base class

* use debug build if debug=True, fix range on aux_obs

* add ProcGenEnv to __init__.py, add missing imports to procgen.py

* export RemoveDictWrapper and build, update train_procgen.py, move assets download into env creation and replace init_assets_and_build with just build

* fix formatting issues

* only call global init once

* fix path in setup.py

* revert part of makefile

* ignore IDE files and folders

* vec remove dict

* export VecRemoveDictObs

* remove RemoveDictWrapper

* remove IDE files

* move shared .h and .cpp files to common folder, update build to use those, dedupe env.cpp

* fix missing header

* try unified build function

* remove old scripts dir

* add comment on build

* upload libenv with render fixes

* tell qthreads to die when we unload the library

* pyglet.app.run is garbage

* static fixes

* whoops

* actually vsync is on

* cleanup

* cleanup

* extern C for libenv interface

* parse util rcall arg

* high difficulty fix

* game type enums

* ProcGenEnv subclasses

* game type cleanup

* unrecognized key

* unrecognized game type

* parse util reorg

* args management

* typo fix

* GinParser

* arg tweaks

* tweak

* restore start_level/num_levels setting

* fix create_procgen_env interface

* build fix

* procgen args in init signature

* fix

* build fix

* fix logger usage in ppo_metal/run_retro

* removed unnecessary OrderedDict requirement in subproc_vec_env

* flake8 fix

* allow for non-mpi tests

* mpi test fixes

* flake8; removed special logic for discrete spaces in dummy_vec_env

* remove forked argument in front of tests - does not play nicely with subprocvecenv in spawned processes; analog of forked in ddpg/test_smoke

* Everyrl initial commit & a few minor baselines changes (#226)

* everyrl initial commit

* add keep_buf argument to VecMonitor

* logger changes: set_comm and fix to mpi_mean functionality

* if filename not provided, don't create ResultsWriter

* change variable syncing function to simplify its usage. now you should initialize from all mpi processes

* everyrl coinrun changes

* tf_distr changes, bugfix

* get_one

* bring back get_next to temporarily restore code

* lint fixes

* fix test

* rename profile function

* rename gaussian

* fix coinrun training script

* change random seeding to work with new gym version (#231)

* change random seeding to work with new gym version

* move seeding to seed() method

* fix mnistenv

* actually try some of the tests before pushing

* more deterministic fixed seq

* misc changes to vecenvs and run.py for benchmarks (#236)

* misc changes to vecenvs and run.py for benchmarks

* dont seed global gen

* update more references to assert_venvs_equal

* Rl19 (#232)

* everyrl initial commit

* add keep_buf argument to VecMonitor

* logger changes: set_comm and fix to mpi_mean functionality

* if filename not provided, don't create ResultsWriter

* change variable syncing function to simplify its usage. now you should initialize from all mpi processes

* everyrl coinrun changes

* tf_distr changes, bugfix

* get_one

* bring back get_next to temporarily restore code

* lint fixes

* fix test

* rename profile function

* rename gaussian

* fix coinrun training script

* rl19

* remove everyrl dir which appeared in the merge for some reason

* readme

* fiddle with ddpg

* make ddpg work

* steps_total argument

* gpu count

* clean up hyperparams and shape math

* logging + saving

* configuration stuff

* fixes, smoke tests

* fix stats

* make load_results return dicts -- easier to create the same kind of objects with some other mechanism for passing to downstream functions

* benchmarks

* fix tests

* add dqn to tests, fix it

* minor

* turned annotated transformer (pytorch) into a script

* more refactoring

* jax stuff

* cluster

* minor

* copy & paste alec code

* sign error

* add huber, rename some parameters, snapshotting off by default

* remove jax stuff

* minor

* move maze env

* minor

* remove trailing spaces

* remove trailing space

* lint

* fix test breakage due to gym update

* rename function

* move maze back to codegen

* get recurrent ppo working

* enable both lstm and gru

* script to print table of benchmark results

* various

* fix dqn

* add fixup initializer, remove lastrew

* organize logging stats

* fix silly bug

* refactor models

* fix mpi usage

* check sync

* minor

* change vf coef, hps

* clean up slicing in ppo

* minor fixes

* caching transformer

* docstrings

* xf fixes

* get rid of 'B' and 'BT' arguments

* minor

* transformer example

* remove output_kind from base class until we have a better idea how to use it

* add comments, revert maze stuff

* flake8

* codegen lint

* fix codegen tests

* responded to peter's comments

* lint fixes

* minor changes to baselines (#243)

* minor changes to baselines

* fix spaces reference

* remove flake8 disable comments and fix import

* okay maybe don't add spec to vec_env

* Merge branch 'master' of github.com:openai/games

 the commit.

* flake8 complaints in baselines/her

* update dmlab30 env (#258)

* codegen continuous control experiment pr (#256)

* finish cherry-pick td3 test commit

* removed graph simplification error ingore

* merge delayed logger config

* merge updated baselines logger

* lazy_mpi load

* cleanups

* use lazy mpi imports in codegen

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* removed extra printouts from TdLayer op

* silly recursion

* running codegen cc experiment

* wip

* more wip

* use actor is input for critic targets, instead of the action taken

* batch size 100

* tweak update parameters

* tweaking td3 runs

* wip

* use nenvs=2 for contcontrol (to be comparable with ppo_metal)

* wip. Doubts about usefulness of actor in critic target

* delayed actor in ActorLoss

* score is average of last 100

* skip lack of losses or too many action distributions

* 16 envs for contcontrol, replay buffer size equal to horizon (no point in making it longer)

* syntax

* microfixes

* minifixes

* run in process logic to bypass tensorflow freezes/failures (per Oleg's suggestion)

* squash-merge master, resolve conflicts

* remove erroneous file

* restore normal MPI imports

* move wrappers around a little bit

* autopep8

* cleanups

* cleanup mpi_eda, autopep8

* make activation function of action distribution customizable

* cleanups; preparation for a pr

* syntax

* merge latest master, resolve conflicts

* wrap MPI import with try/except

* allow import of modules through env id im baselines cmd_util

* flake8 complaints

* only wrap box action spaces with ClipActionsWrapper

* flake8

* fixes to algo_prob according to Oleg's suggestions

* use apply_without_scope flag in ActorLoss

* remove extra line in algo/core.py

* Rl19 metalearning (#261)

* rl19 metalearning and dict obs

* master merge arch fix

* lint fixes

* view fixes

* load vars tweaks

* user config cleanup

* documentation and revisions

* pass train comm to rl19

* cleanup

* Symshapes - gives codegen ability to evaluate same algo on envs with different ob/ac shapes (#262)

* finish cherry-pick td3 test commit

* removed graph simplification error ingore

* merge delayed logger config

* merge updated baselines logger

* lazy_mpi load

* cleanups

* use lazy mpi imports in codegen

* more lazy mpi

* don't pretend that class is a module, just use it as a class

* mass-replace mpi4py imports

* flake8

* fix previous lazy_mpi imports

* removed extra printouts from TdLayer op

* silly recursion

* running codegen cc experiment

* wip

* more wip

* use actor is input for critic targets, instead of the action taken

* batch size 100

* tweak update parameters

* tweaking td3 runs

* wip

* use nenvs=2 for contcontrol (to be comparable with ppo_metal)

* wip. Doubts about usefulness of actor in critic target

* delayed actor in ActorLoss

* score is average of last 100

* skip lack of losses or too many action distributions

* 16 envs for contcontrol, replay buffer size equal to horizon (no point in making it longer)

* syntax

* microfixes

* minifixes

* run in process logic to bypass tensorflow freezes/failures (per Oleg's suggestion)

* random physics for mujoco

* random parts sizes with range 0.4

* add notebook with results into x/peterz

* variations of ant

* roboschool use gym.make kwargs

* use float as lowest score after rank transform

* rcall from master

* wip

* re-enable dynamic routing

* wip

* squash-merge master, resolve conflicts

* remove erroneous file

* restore normal MPI imports

* move wrappers around a little bit

* autopep8

* cleanups

* cleanup mpi_eda, autopep8

* make activation function of action distribution customizable

* cleanups; preparation for a pr

* syntax

* merge latest master, resolve conflicts

* wrap MPI import with try/except

* allow import of modules through env id im baselines cmd_util

* flake8 complaints

* only wrap box action spaces with ClipActionsWrapper

* flake8

* fixes to algo_prob according to Oleg's suggestions

* use apply_without_scope flag in ActorLoss

* remove extra line in algo/core.py

* multi-task support

* autopep8

* symbolic suffix-shapes (not B,T yet)

* test_with_mpi -> with_mpi rename

* remove extra blank lines in algo/core

* remove extra blank lines in algo/core

* remove more blank lines

* symbolify shapes in existing algorithms

* minor output changes

* cleaning up merge conflicts

* cleaning up merge conflicts

* cleaning up more merge conflicts

* restore mpi_map.py from master

* remove tensorflow dependency from VecEnv

* make tests use single-threaded session for determinism of KfacOptimizer (#298)

* make tests use single-threaded session for determinism of KfacOptimizer

* updated comment in kfac.py

* remove unused sess_config

* add score calculator wrapper, forward property lookups on vecenv wrap… (#300)

* add score calculator wrapper, forward property lookups on vecenv wrapper, misc cleanup

* tests

* pylint

* fix vec monitor infos

* Workbench (#303)

* begin workbench

* cleanup

* begin procgen config integration

* arg tweaks

* more args

* parameter saving

* begin procgen enjoy

* tweaks

* more workbench

* more args sync/restore

* cleanup

* merge in master

* rework args priority

* more workbench

* more loggign

* impala cnn

* impala lstm

* tweak

* tweaks

* rl19 time logging

* misc fixes

* faster pipeline

* update local.py

* sess and log config tweaks

* num processes

* logging tweaks

* difficulty reward wrapper

* logging fixes

* gin tweaks

* tweak

* fix

* task id

* param loading

* more variable loading

* entrypoint

* tweak

* ksync

* restore lstm

* begin rl19 support

* tweak

* rl19 rnn

* more rl19 integration

* fix

* cleanup

* restore rl19 rnn

* cleanup

* cleanup

* wrappers.get_log_info

* cleanup

* cleanup

* directory cleanup

* logging, num_experiments

* fixes

* cleanup

* gin fixes

* fix local max gpu

* resid nx

* num machines and download params

* rename

* cleanup

* create workbench

* more reorg

* fix

* more logging wrappers

* lint fix

* restore train procgen

* restore train procgen

* pylint fix

* better wrapping

* config sweep

* args sweep

* test workers

* mpi_weight

* train test comm and high difficulty fix

* enjoy show returns

* removing gin, procgen_parser

* removing gin

* procgen args

* config fixes

* cleanup

* cleanup

* procgen args fix

* fix

* rcall syncing

* lint

* rename mpi_weight

* use username for sync

* fixes

* microbatch fix

* Grad clipping in MpiAdamOptimizer, transformer changes (#304)

* transformer mnist experiments

* version that only builds one model

* work on inverted mnist

* Add grad clipping to MpiAdamOptimizer

* various

* transformer changes, loading

* get rid of soft labels

* transformer baseline

* minor

* experiments involving all possible training sets

* vary training

* minor

* get ready for fine-tuning expers

* lint

* minor

* Add jrl19 as backend for workbench (#324)

enable jrl in workbench
minor logger changes

* extra functionality in baselines.common.plot_util (#310)

* get plot_util from mt_experiments branch

* add labels

* unit tests for plot_util

* Fixed sequence env minor (#333)

minor changes to FixedSequenceEnv to allow full score

* fix tests (#335)

* Procgen Benchmark Updates (#328)

* directory cleanup

* logging, num_experiments

* fixes

* cleanup

* gin fixes

* fix local max gpu

* resid nx

* tweak

* num machines and download params

* rename

* cleanup

* create workbench

* more reorg

* fix

* more logging wrappers

* lint fix

* restore train procgen

* restore train procgen

* pylint fix

* better wrapping

* whackamole walls

* config sweep

* tweak

* args sweep

* tweak

* test workers

* mpi_weight

* train test comm and high difficulty fix

* enjoy show returns

* better joint training

* tweak

* Add —update to args and add gin-config to requirements.txt

* add username to download_file

* removing gin, procgen_parser

* removing gin

* procgen args

* config fixes

* cleanup

* cleanup

* procgen args fix

* fix

* rcall syncing

* lint

* rename mpi_weight

* begin composable game

* more composable game

* tweak

* background alpha

* use username for sync

* fixes

* microbatch fix

* lure composable game

* merge

* proc trans update

* proc trans update (#307)

* finetuning experiment

* Change is_local to use `use_rcall` and fix error of `enjoy.py` with multiple ends

* graphing help

* add --local

* change args_dict['env_name'] to ENV_NAME

* finetune experiments

* tweak

* tweak

* reorg wrappers, remove is_local

* workdir/local fixes

* move finetune experiments

* default dir and graphing

* more graphing

* fix

* pooled syncing

* tweaks

* dir fix

* tweak

* wrapper mpi fix

* wind and turrets

* composability cleanup

* radius cleanup

* composable reorg

* laser gates

* composable tweaks

* soft walls

* tweak

* begin swamp

* more swamp

* more swamp

* fix

* hidden mines

* use maze layout

* tweak

* laser gate tweaks

* tweaks

* tweaks

* lure/propel updates

* composable midnight

* composable coinmaze

* composability difficulty

* tweak

* add step to save_params

* composable offsets

* composable boxpush

* composable combiner

* tweak

* tweak

* always choose correct number of mechanics

* fix

* rcall local fix

* add steps when dump and save parmas

* loading rank 1,2,3.. error fix

* add experiments.py

* fix loading latest weight with no -rest

* support more complex run_id and add more examples

* fix typo

* move post_run_id into experiments.py

* add hp_search example

* error fix

* joint experiments in progress

* joint hp finished

* typo

* error fix

* edit experiments

* Save experiments set up in code and  save weights per step (#319)

* add step to save_params

* add steps when dump and save parmas

* loading rank 1,2,3.. error fix

* add experiments.py

* fix loading latest weight with no -rest

* support more complex run_id and add more examples

* fix typo

* move post_run_id into experiments.py

* add hp_search example

* error fix

* joint experiments in progress

* joint hp finished

* typo

* error fix

* edit experiments

* tweaks

* graph exp WIP

* depth tweaks

* move save_all

* fix

* restore_dir name

* restore depth

* choose max mechanics

* use override mode

* tweak frogger

* lstm default

* fix

* patience is composable

* hunter is composable

* fixed asset seed cleanup

* minesweeper is composable

* eggcatch is composable

* tweak

* applesort is composable

* chaser game

* begin lighter

* lighter game

* tractor game

* boxgather game

* plumber game

* hitcher game

* doorbell game

* lawnmower game

* connecter game

* cannonaim

* outrun game

* encircle game

* spinner game

* tweak

* tweak

* detonator game

* driller

* driller

* mixer

* conveyor

* conveyor game

* joint pcg experiments

* fixes

* pcg sweep experiment

* cannonaim fix

* combiner fix

* store save time

* laseraim fix

* lightup fix

* detonator tweaks

* detonator fixes

* driller fix

* lawnmower calibration

* spinner calibration

* propel fix

* train experiment

* print load time

* system independent hashing

* remove gin configurable

* task ids fix

* test_pcg experiment

* connecter dense reward

* hard_pcg

* num train comms

* mpi splits envs

* tweaks

* tweaks

* graph tweaks

* graph tweaks

* lint fix

* fix tests

* load bugfix

* difficulty timeout tweak

* tweaks

* more graphing

* graph tweaks

* tweak

* download file fix

* pcg train envs list

* cleanup

* tweak

* manually name impala layers

* tweak

* expect fps

* backend arg

* args tweak

* workbench cleanup

* move graph files

* workbench cleanup

* split env name by comma

* workbench cleanup

* ema graph

* remove Dict

* use tf.io.gfile

* comments for auto-killing jobs

* lint fix

* write latest file when not saving all and load it when step=None

* ci/runtests.sh - pass all folders to pytest (#342)

* ci/runtests.sh - pass all folders to pytest

* mpi_optimizer_test precision 1e-4

* fixes to tests

* search for tests in the entire jax folder, also remove unnecessary humor

* delete unnecessary stuff (#338)

* Add initializer for process-level setup in SubprocVecEnv (#276)

* Add initializer for process-level setup in SubprocVecEnv

Use case: run logger.configure() in each subprocess

* Add option to force dummy vec env

* Procgen fixes (#352)

* tweak

* documentation

* rely on log_comm, remove mpi averaging from wrappers

* pass comm for ppo2 initialization

* ppo2 logging

* experiment tweaks

* auto launch tensorboard when using local backend

* graph tweaks

* pass caller to config

* configure logger and tensorboard

* make parent dir if necessary

* parentdir tweak

* JRL PPO test with delayed identity env (#355)

* add a custom delay to identity_env

* min reward 0.8 in delayed identity test

* seed the tests, perfect score on delayed_identity_test

* delay=1 in delayed_identity_test

* flake8 complaints

* increased number of steps in fixed_seq_test

* seed identity tests to ensure reproducibility

* docstrings

* (onp, np) -> (np, jp), switch jax code to use mark_slow decorator (#363)

switch to mark_slow decorator

* fix tests - add matplotlib to setup_requires, put mpi4py import in try-except

* test fixes
2019-05-08 11:36:10 -07:00
27 changed files with 192 additions and 186 deletions

View File

@@ -11,7 +11,7 @@ WORKDIR $CODE_DIR/baselines
# Clean up pycache and pyc files
RUN rm -rf __pycache__ && \
find . -name "*.pyc" -delete && \
pip install tensorflow && \
pip install 'tensorflow < 2' && \
pip install -e .[test]

View File

@@ -1,4 +1,4 @@
**Status:** Active (under active development, breaking changes may occur)
**Status:** Maintenance (expect bug fixes and minor updates)
<img src="data/logo.jpg" width=25% align="right" /> [![Build status](https://travis-ci.org/openai/baselines.svg?branch=master)](https://travis-ci.org/openai/baselines)
@@ -39,21 +39,24 @@ To activate a virtualenv:
More thorough tutorial on virtualenvs and options can be found [here](https://virtualenv.pypa.io/en/stable/)
## Tensorflow versions
The master branch supports Tensorflow from version 1.4 to 1.14. For Tensorflow 2.0 support, please use tf2 branch.
## Installation
- Clone the repo and cd into it:
```bash
git clone https://github.com/openai/baselines.git
cd baselines
```
- If you don't have TensorFlow installed already, install your favourite flavor of TensorFlow. In most cases,
- If you don't have TensorFlow installed already, install your favourite flavor of TensorFlow. In most cases, you may use
```bash
pip install tensorflow-gpu # if you have a CUDA-compatible gpu and proper drivers
pip install tensorflow-gpu==1.14 # if you have a CUDA-compatible gpu and proper drivers
```
or
```bash
pip install tensorflow
pip install tensorflow==1.14
```
should be sufficient. Refer to [TensorFlow installation guide](https://www.tensorflow.org/install/)
to install Tensorflow 1.14, which is the latest version of Tensorflow supported by the master branch. Refer to [TensorFlow installation guide](https://www.tensorflow.org/install/)
for more details.
- Install baselines package
@@ -98,6 +101,8 @@ python -m baselines.run --alg=deepq --env=PongNoFrameskip-v4 --num_timesteps=1e6
```
## Saving, loading and visualizing models
### Saving and loading the model
The algorithms serialization API is not properly unified yet; however, there is a simple method to save / restore trained models.
`--save_path` and `--load_path` command-line option loads the tensorflow state from a given path before training, and saves it after the training, respectively.
Let's imagine you'd like to train ppo2 on Atari Pong, save the model and then later visualize what has it learnt.
@@ -111,8 +116,17 @@ python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=0 --
*NOTE:* Mujoco environments require normalization to work properly, so we wrap them with VecNormalize wrapper. Currently, to ensure the models are saved with normalization (so that trained models can be restored and run without further training) the normalization coefficients are saved as tensorflow variables. This can decrease the performance somewhat, so if you require high-throughput steps with Mujoco and do not need saving/restoring the models, it may make sense to use numpy normalization instead. To do that, set 'use_tf=False` in [baselines/run.py](baselines/run.py#L116).
## Loading and vizualizing learning curves and other training metrics
See [here](docs/viz/viz.ipynb) for instructions on how to load and display the training data.
### Logging and vizualizing learning curves and other training metrics
By default, all summary data, including progress, standard output, is saved to a unique directory in a temp folder, specified by a call to Python's [tempfile.gettempdir()](https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir).
The directory can be changed with the `--log_path` command-line option.
```bash
python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --num_timesteps=2e7 --save_path=~/models/pong_20M_ppo2 --log_path=~/logs/Pong/
```
*NOTE:* Please be aware that the logger will overwrite files of the same name in an existing directory, thus it's recommended that folder names be given a unique timestamp to prevent overwritten logs.
Another way the temp directory can be changed is through the use of the `$OPENAI_LOGDIR` environment variable.
For examples on how to load and display the training data, see [here](docs/viz/viz.ipynb).
## Subpackages

View File

@@ -6,7 +6,7 @@ from baselines import logger
from baselines.common import set_global_seeds
from baselines.common.policies import build_policy
from baselines.common.tf_util import get_session, save_variables
from baselines.common.tf_util import get_session, save_variables, load_variables
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.a2c.utils import batch_to_seq, seq_to_batch
@@ -216,7 +216,8 @@ class Model(object):
self.train = train
self.save = functools.partial(save_variables, sess=sess, variables=params)
self.save = functools.partial(save_variables, sess=sess)
self.load = functools.partial(load_variables, sess=sess)
self.train_model = train_model
self.step_model = step_model
self._step = _step
@@ -358,6 +359,9 @@ def learn(network, env, seed=None, nsteps=20, total_timesteps=int(80e6), q_coef=
total_timesteps=total_timesteps, lrschedule=lrschedule, c=c,
trust_region=trust_region, alpha=alpha, delta=delta)
if load_path is not None:
model.load(load_path)
runner = Runner(env=env, model=model, nsteps=nsteps)
if replay_ratio > 0:
buffer = Buffer(env=env, nsteps=nsteps, size=buffer_size)

View File

@@ -1,2 +1,3 @@
# flake8: noqa F403
from baselines.bench.benchmarks import *
from baselines.bench.monitor import *

View File

@@ -1,5 +1,4 @@
import re
import os.path as osp
import os
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))

View File

@@ -1,13 +1,11 @@
__all__ = ['Monitor', 'get_monitor_files', 'load_results']
import gym
from gym.core import Wrapper
import time
from glob import glob
import csv
import os.path as osp
import json
import numpy as np
class Monitor(Wrapper):
EXT = "monitor.csv"
@@ -162,27 +160,3 @@ def load_results(dir):
df['t'] -= min(header['t_start'] for header in headers)
df.headers = headers # HACK to preserve backwards compatibility
return df
def test_monitor():
env = gym.make("CartPole-v1")
env.seed(0)
mon_file = "/tmp/baselines-test-%s.monitor.csv" % uuid.uuid4()
menv = Monitor(env, mon_file)
menv.reset()
for _ in range(1000):
_, _, done, _ = menv.step(0)
if done:
menv.reset()
f = open(mon_file, 'rt')
firstline = f.readline()
assert firstline.startswith('#')
metadata = json.loads(firstline[1:])
assert metadata['env_id'] == "CartPole-v1"
assert set(metadata.keys()) == {'env_id', 'gym_version', 't_start'}, "Incorrect keys in monitor metadata"
last_logline = pandas.read_csv(f, index_col=None)
assert set(last_logline.keys()) == {'l', 't', 'r'}, "Incorrect keys in monitor logline"
f.close()
os.remove(mon_file)

View File

@@ -0,0 +1,31 @@
from .monitor import Monitor
import gym
import json
def test_monitor():
import pandas
import os
import uuid
env = gym.make("CartPole-v1")
env.seed(0)
mon_file = "/tmp/baselines-test-%s.monitor.csv" % uuid.uuid4()
menv = Monitor(env, mon_file)
menv.reset()
for _ in range(1000):
_, _, done, _ = menv.step(0)
if done:
menv.reset()
f = open(mon_file, 'rt')
firstline = f.readline()
assert firstline.startswith('#')
metadata = json.loads(firstline[1:])
assert metadata['env_id'] == "CartPole-v1"
assert set(metadata.keys()) == {'env_id', 't_start'}, "Incorrect keys in monitor metadata"
last_logline = pandas.read_csv(f, index_col=None)
assert set(last_logline.keys()) == {'l', 't', 'r'}, "Incorrect keys in monitor logline"
f.close()
os.remove(mon_file)

View File

@@ -254,6 +254,13 @@ class LazyFrames(object):
return len(self._force())
def __getitem__(self, i):
return self._force()[i]
def count(self):
frames = self._force()
return frames.shape[frames.ndim - 1]
def frame(self, i):
return self._force()[..., i]
def make_atari(env_id, max_episode_steps=None):

View File

@@ -9,7 +9,7 @@ except ImportError:
MPI = None
import gym
from gym.wrappers import FlattenDictWrapper
from gym.wrappers import FlattenObservation, FilterObservation
from baselines import logger
from baselines.bench import Monitor
from baselines.common import set_global_seeds
@@ -81,8 +81,7 @@ def make_env(env_id, env_type, mpi_rank=0, subrank=0, seed=None, reward_scale=1.
env = gym.make(env_id, **env_kwargs)
if flatten_dict_observations and isinstance(env.observation_space, gym.spaces.Dict):
keys = env.observation_space.spaces.keys()
env = gym.wrappers.FlattenDictWrapper(env, dict_keys=list(keys))
env = FlattenObservation(env)
env.seed(seed + subrank if seed is not None else None)
env = Monitor(env,
@@ -128,7 +127,7 @@ def make_robotics_env(env_id, seed, rank=0):
"""
set_global_seeds(seed)
env = gym.make(env_id)
env = FlattenDictWrapper(env, ['observation', 'desired_goal'])
env = FlattenObservation(FilterObservation(env, ['observation', 'desired_goal']))
env = Monitor(
env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)),
info_keywords=('is_success',))
@@ -170,6 +169,7 @@ def common_arg_parser():
parser.add_argument('--save_path', help='Path to save trained model to', default=None, type=str)
parser.add_argument('--save_video_interval', help='Save video every x steps (0 = disabled)', default=0, type=int)
parser.add_argument('--save_video_length', help='Length of recorded video. Default: 200', default=200, type=int)
parser.add_argument('--log_path', help='Directory to save learning curve data.', default=None, type=str)
parser.add_argument('--play', default=False, action='store_true')
return parser
@@ -186,7 +186,7 @@ def robotics_arg_parser():
def parse_unknown_args(args):
"""
Parse arguments not consumed by arg parser into a dicitonary
Parse arguments not consumed by arg parser into a dictionary
"""
retval = {}
preceded_by_key = False

View File

@@ -65,7 +65,7 @@ def check_synced(localval, comm=None):
vals = comm.gather(localval)
if comm.rank == 0:
assert all(val==vals[0] for val in vals[1:]),\
f'MpiAdamOptimizer detected that different workers have different weights: {vals}'
'MpiAdamOptimizer detected that different workers have different weights: {}'.format(vals)
@with_mpi(timeout=5)
def test_nonfreeze():

View File

@@ -12,8 +12,9 @@ def mpi_mean(x, axis=0, comm=None, keepdims=False):
localsum = np.zeros(n+1, x.dtype)
localsum[:n] = xsum.ravel()
localsum[n] = x.shape[axis]
globalsum = np.zeros_like(localsum)
comm.Allreduce(localsum, globalsum, op=MPI.SUM)
# globalsum = np.zeros_like(localsum)
# comm.Allreduce(localsum, globalsum, op=MPI.SUM)
globalsum = comm.allreduce(localsum, op=MPI.SUM)
return globalsum[:n].reshape(xsum.shape) / globalsum[n], globalsum[n]
def mpi_moments(x, axis=0, comm=None, keepdims=False):

View File

@@ -70,9 +70,11 @@ class ShmemVecEnv(VecEnv):
assert len(actions) == len(self.parent_pipes)
for pipe, act in zip(self.parent_pipes, actions):
pipe.send(('step', act))
self.waiting_step = True
def step_wait(self):
outs = [pipe.recv() for pipe in self.parent_pipes]
self.waiting_step = False
obs, rews, dones, infos = zip(*outs)
return self._decode_obses(obs), np.array(rews), np.array(dones), infos

View File

@@ -4,33 +4,36 @@ import numpy as np
from .vec_env import VecEnv, CloudpickleWrapper, clear_mpi_env_vars
def worker(remote, parent_remote, env_fn_wrapper):
def worker(remote, parent_remote, env_fn_wrappers):
def step_env(env, action):
ob, reward, done, info = env.step(action)
if done:
ob = env.reset()
return ob, reward, done, info
parent_remote.close()
env = env_fn_wrapper.x()
envs = [env_fn_wrapper() for env_fn_wrapper in env_fn_wrappers.x]
try:
while True:
cmd, data = remote.recv()
if cmd == 'step':
ob, reward, done, info = env.step(data)
if done:
ob = env.reset()
remote.send((ob, reward, done, info))
remote.send([step_env(env, action) for env, action in zip(envs, data)])
elif cmd == 'reset':
ob = env.reset()
remote.send(ob)
remote.send([env.reset() for env in envs])
elif cmd == 'render':
remote.send(env.render(mode='rgb_array'))
remote.send([env.render(mode='rgb_array') for env in envs])
elif cmd == 'close':
remote.close()
break
elif cmd == 'get_spaces_spec':
remote.send((env.observation_space, env.action_space, env.spec))
remote.send(CloudpickleWrapper((envs[0].observation_space, envs[0].action_space, envs[0].spec)))
else:
raise NotImplementedError
except KeyboardInterrupt:
print('SubprocVecEnv worker: got KeyboardInterrupt')
finally:
env.close()
for env in envs:
env.close()
class SubprocVecEnv(VecEnv):
@@ -38,17 +41,23 @@ class SubprocVecEnv(VecEnv):
VecEnv that runs multiple environments in parallel in subproceses and communicates with them via pipes.
Recommended to use when num_envs > 1 and step() can be a bottleneck.
"""
def __init__(self, env_fns, spaces=None, context='spawn'):
def __init__(self, env_fns, spaces=None, context='spawn', in_series=1):
"""
Arguments:
env_fns: iterable of callables - functions that create environments to run in subprocesses. Need to be cloud-pickleable
in_series: number of environments to run in series in a single process
(e.g. when len(env_fns) == 12 and in_series == 3, it will run 4 processes, each running 3 envs in series)
"""
self.waiting = False
self.closed = False
self.in_series = in_series
nenvs = len(env_fns)
assert nenvs % in_series == 0, "Number of envs must be divisible by number of envs to run in series"
self.nremotes = nenvs // in_series
env_fns = np.array_split(env_fns, self.nremotes)
ctx = mp.get_context(context)
self.remotes, self.work_remotes = zip(*[ctx.Pipe() for _ in range(nenvs)])
self.remotes, self.work_remotes = zip(*[ctx.Pipe() for _ in range(self.nremotes)])
self.ps = [ctx.Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
@@ -59,12 +68,13 @@ class SubprocVecEnv(VecEnv):
remote.close()
self.remotes[0].send(('get_spaces_spec', None))
observation_space, action_space, self.spec = self.remotes[0].recv()
observation_space, action_space, self.spec = self.remotes[0].recv().x
self.viewer = None
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
VecEnv.__init__(self, nenvs, observation_space, action_space)
def step_async(self, actions):
self._assert_not_closed()
actions = np.array_split(actions, self.nremotes)
for remote, action in zip(self.remotes, actions):
remote.send(('step', action))
self.waiting = True
@@ -72,6 +82,7 @@ class SubprocVecEnv(VecEnv):
def step_wait(self):
self._assert_not_closed()
results = [remote.recv() for remote in self.remotes]
results = _flatten_list(results)
self.waiting = False
obs, rews, dones, infos = zip(*results)
return _flatten_obs(obs), np.stack(rews), np.stack(dones), infos
@@ -80,7 +91,9 @@ class SubprocVecEnv(VecEnv):
self._assert_not_closed()
for remote in self.remotes:
remote.send(('reset', None))
return _flatten_obs([remote.recv() for remote in self.remotes])
obs = [remote.recv() for remote in self.remotes]
obs = _flatten_list(obs)
return _flatten_obs(obs)
def close_extras(self):
self.closed = True
@@ -97,6 +110,7 @@ class SubprocVecEnv(VecEnv):
for pipe in self.remotes:
pipe.send(('render', None))
imgs = [pipe.recv() for pipe in self.remotes]
imgs = _flatten_list(imgs)
return imgs
def _assert_not_closed(self):
@@ -115,3 +129,10 @@ def _flatten_obs(obs):
return {k: np.stack([o[k] for o in obs]) for k in keys}
else:
return np.stack(obs)
def _flatten_list(l):
assert isinstance(l, (list, tuple))
assert len(l) > 0
assert all([len(l_) > 0 for l_ in l])
return [l__ for l_ in l for l__ in l_]

View File

@@ -67,6 +67,50 @@ def test_vec_env(klass, dtype): # pylint: disable=R0914
assert_venvs_equal(env1, env2, num_steps=num_steps)
@pytest.mark.parametrize('dtype', ('uint8', 'float32'))
@pytest.mark.parametrize('num_envs_in_series', (3, 4, 6))
def test_sync_sampling(dtype, num_envs_in_series):
"""
Test that a SubprocVecEnv running with envs in series
outputs the same as DummyVecEnv.
"""
num_envs = 12
num_steps = 100
shape = (3, 8)
def make_fn(seed):
"""
Get an environment constructor with a seed.
"""
return lambda: SimpleEnv(seed, shape, dtype)
fns = [make_fn(i) for i in range(num_envs)]
env1 = DummyVecEnv(fns)
env2 = SubprocVecEnv(fns, in_series=num_envs_in_series)
assert_venvs_equal(env1, env2, num_steps=num_steps)
@pytest.mark.parametrize('dtype', ('uint8', 'float32'))
@pytest.mark.parametrize('num_envs_in_series', (3, 4, 6))
def test_sync_sampling_sanity(dtype, num_envs_in_series):
"""
Test that a SubprocVecEnv running with envs in series
outputs the same as SubprocVecEnv without running in series.
"""
num_envs = 12
num_steps = 100
shape = (3, 8)
def make_fn(seed):
"""
Get an environment constructor with a seed.
"""
return lambda: SimpleEnv(seed, shape, dtype)
fns = [make_fn(i) for i in range(num_envs)]
env1 = SubprocVecEnv(fns)
env2 = SubprocVecEnv(fns, in_series=num_envs_in_series)
assert_venvs_equal(env1, env2, num_steps=num_steps)
class SimpleEnv(gym.Env):
"""
An environment with a pre-determined observation space

View File

@@ -38,6 +38,9 @@ def obs_space_info(obs_space):
if isinstance(obs_space, gym.spaces.Dict):
assert isinstance(obs_space.spaces, OrderedDict)
subspaces = obs_space.spaces
elif isinstance(obs_space, gym.spaces.Tuple):
assert isinstance(obs_space.spaces, tuple)
subspaces = {i: obs_space.spaces[i] for i in range(len(obs_space.spaces))}
else:
subspaces = {None: obs_space}
keys = []

View File

@@ -378,11 +378,6 @@ class DDPG(object):
self.param_noise_stddev: self.param_noise.current_stddev,
})
if MPI is not None:
mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size()
else:
mean_distance = distance
if MPI is not None:
mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size()
else:

View File

@@ -13,7 +13,7 @@ The functions in this file can are used to create the following functions:
stochastic: bool
if set to False all the actions are always deterministic (default False)
update_eps_ph: float
update epsilon a new value, if negative not update happens
update epsilon a new value, if negative no update happens
(default: no update)
Returns

View File

@@ -142,9 +142,8 @@ def learn(env,
final value of random action probability
train_freq: int
update the model every `train_freq` steps.
set to None to disable printing
batch_size: int
size of a batched sampled from replay buffer for training
size of a batch sampled from replay buffer for training
print_freq: int
how often to print out training progress
set to None to disable printing

View File

@@ -2,101 +2,6 @@ import tensorflow as tf
import tensorflow.contrib.layers as layers
def _mlp(hiddens, input_, num_actions, scope, reuse=False, layer_norm=False):
with tf.variable_scope(scope, reuse=reuse):
out = input_
for hidden in hiddens:
out = layers.fully_connected(out, num_outputs=hidden, activation_fn=None)
if layer_norm:
out = layers.layer_norm(out, center=True, scale=True)
out = tf.nn.relu(out)
q_out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return q_out
def mlp(hiddens=[], layer_norm=False):
"""This model takes as input an observation and returns values of all actions.
Parameters
----------
hiddens: [int]
list of sizes of hidden layers
layer_norm: bool
if true applies layer normalization for every layer
as described in https://arxiv.org/abs/1607.06450
Returns
-------
q_func: function
q_function for DQN algorithm.
"""
return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
def _cnn_to_mlp(convs, hiddens, dueling, input_, num_actions, scope, reuse=False, layer_norm=False):
with tf.variable_scope(scope, reuse=reuse):
out = input_
with tf.variable_scope("convnet"):
for num_outputs, kernel_size, stride in convs:
out = layers.convolution2d(out,
num_outputs=num_outputs,
kernel_size=kernel_size,
stride=stride,
activation_fn=tf.nn.relu)
conv_out = layers.flatten(out)
with tf.variable_scope("action_value"):
action_out = conv_out
for hidden in hiddens:
action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
action_out = layers.layer_norm(action_out, center=True, scale=True)
action_out = tf.nn.relu(action_out)
action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)
if dueling:
with tf.variable_scope("state_value"):
state_out = conv_out
for hidden in hiddens:
state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
if layer_norm:
state_out = layers.layer_norm(state_out, center=True, scale=True)
state_out = tf.nn.relu(state_out)
state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
q_out = state_score + action_scores_centered
else:
q_out = action_scores
return q_out
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False):
"""This model takes as input an observation and returns values of all actions.
Parameters
----------
convs: [(int, int, int)]
list of convolutional layers in form of
(num_outputs, kernel_size, stride)
hiddens: [int]
list of sizes of hidden layers
dueling: bool
if true double the output MLP to compute a baseline
for action scores
layer_norm: bool
if true applies layer normalization for every layer
as described in https://arxiv.org/abs/1607.06450
Returns
-------
q_func: function
q_function for DQN algorithm.
"""
return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
def build_q_func(network, hiddens=[256], dueling=True, layer_norm=False, **network_kwargs):
if isinstance(network, str):
from baselines.common.models import get_network_builder

View File

@@ -23,7 +23,7 @@ from baselines.gail.dataset.mujoco_dset import Mujoco_Dset
def argsparser():
parser = argparse.ArgumentParser("Tensorflow Implementation of Behavior Cloning")
parser.add_argument('--env_id', help='environment ID', default='Hopper-v1')
parser.add_argument('--env_id', help='environment ID', default='Hopper-v2')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--expert_path', type=str, default='data/deterministic.trpo.Hopper.0.00.npz')
parser.add_argument('--checkpoint_dir', help='the directory to save model', default='checkpoint')
@@ -73,7 +73,7 @@ def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4,
savedir_fname = tempfile.TemporaryDirectory().name
else:
savedir_fname = osp.join(ckpt_dir, task_name)
U.save_state(savedir_fname, var_list=pi.get_variables())
U.save_variables(savedir_fname, variables=pi.get_variables())
return savedir_fname

View File

@@ -77,7 +77,7 @@ class Mujoco_Dset(object):
self.log_info()
def log_info(self):
logger.log("Total trajectorues: %d" % self.num_traj)
logger.log("Total trajectories: %d" % self.num_traj)
logger.log("Total transitions: %d" % self.num_transition)
logger.log("Average returns: %f" % self.avg_ret)
logger.log("Std for returns: %f" % self.std_ret)

View File

@@ -165,7 +165,7 @@ def runner(env, policy_func, load_model_path, timesteps_per_batch, number_trajs,
U.initialize()
# Prepare for rollouts
# ----------------------------------------
U.load_state(load_model_path)
U.load_variables(load_model_path)
obs_list = []
acs_list = []

View File

@@ -15,8 +15,7 @@ class RolloutWorker:
"""Rollout worker generates experience by interacting with one or many environments.
Args:
make_env (function): a factory function that creates a new instance of the environment
when called
venv: vectorized gym environments.
policy (object): the policy that is used to act
dims (dict of ints): the dimensions for observations (o), goals (g), and actions (u)
logger (object): the logger that is used by the rollout worker

View File

@@ -379,7 +379,8 @@ def configure(dir=None, format_strs=None, comm=None, log_suffix=''):
dir = osp.join(tempfile.gettempdir(),
datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"))
assert isinstance(dir, str)
os.makedirs(dir, exist_ok=True)
dir = os.path.expanduser(dir)
os.makedirs(os.path.expanduser(dir), exist_ok=True)
rank = get_rank_without_mpi_import()
if rank > 0:
@@ -394,7 +395,8 @@ def configure(dir=None, format_strs=None, comm=None, log_suffix=''):
output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm)
log('Logging to %s'%dir)
if output_formats:
log('Logging to %s'%dir)
def _configure_default_logger():
configure()

View File

@@ -32,7 +32,7 @@ except ImportError:
_game_envs = defaultdict(set)
for env in gym.envs.registry.all():
# TODO: solve this with regexes
env_type = env._entry_point.split(':')[0].split('.')[-1]
env_type = env.entry_point.split(':')[0].split('.')[-1]
_game_envs[env_type].add(env.id)
# reading benchmark names directly from retro requires
@@ -126,7 +126,7 @@ def get_env_type(args):
# Re-parse the gym registry, since we could have new envs since last time.
for env in gym.envs.registry.all():
env_type = env._entry_point.split(':')[0].split('.')[-1]
env_type = env.entry_point.split(':')[0].split('.')[-1]
_game_envs[env_type].add(env.id) # This is a set so add is idempotent
if env_id in _game_envs.keys():
@@ -192,6 +192,12 @@ def parse_cmdline_kwargs(args):
return {k: parse(v) for k,v in parse_unknown_args(args).items()}
def configure_logger(log_path, **kwargs):
if log_path is not None:
logger.configure(log_path)
else:
logger.configure(**kwargs)
def main(args):
# configure logger, disable logging in child MPI processes (with rank > 0)
@@ -202,10 +208,10 @@ def main(args):
if MPI is None or MPI.COMM_WORLD.Get_rank() == 0:
rank = 0
logger.configure()
configure_logger(args.log_path)
else:
logger.configure(format_strs=[])
rank = MPI.COMM_WORLD.Get_rank()
configure_logger(args.log_path, format_strs=[])
model, env = train(args, extra_args)
@@ -220,7 +226,7 @@ def main(args):
state = model.initial_state if hasattr(model, 'initial_state') else None
dones = np.zeros((1,))
episode_rew = 0
episode_rew = np.zeros(env.num_envs) if isinstance(env, VecEnv) else np.zeros(1)
while True:
if state is not None:
actions, _, state, _ = model.step(obs,S=state, M=dones)
@@ -228,13 +234,13 @@ def main(args):
actions, _, _, _ = model.step(obs)
obs, rew, done, _ = env.step(actions)
episode_rew += rew[0] if isinstance(env, VecEnv) else rew
episode_rew += rew
env.render()
done = done.any() if isinstance(done, np.ndarray) else done
if done:
print('episode_rew={}'.format(episode_rew))
episode_rew = 0
obs = env.reset()
done_any = done.any() if isinstance(done, np.ndarray) else done
if done_any:
for i in np.nonzero(done)[0]:
print('episode_rew={}'.format(episode_rew[i]))
episode_rew[i] = 0
env.close()

View File

@@ -4,4 +4,3 @@ exclude =
.git,
__pycache__,
baselines/ppo1,
baselines/bench,

View File

@@ -31,7 +31,7 @@ setup(name='baselines',
packages=[package for package in find_packages()
if package.startswith('baselines')],
install_requires=[
'gym>=0.10.0, <1.0.0',
'gym>=0.15.4, <0.16.0',
'scipy',
'tqdm',
'joblib',
@@ -44,7 +44,7 @@ setup(name='baselines',
author='OpenAI',
url='https://github.com/openai/baselines',
author_email='gym@openai.com',
version='0.1.5')
version='0.1.6')
# ensure there is some tensorflow build with version above 1.4