Compare commits

...

5 Commits

Author SHA1 Message Date
Peter Zhokhov
2c818245d6 dummy commit to RUN BENCHMARKS 2018-07-25 18:09:30 -07:00
Peter Zhokhov
ae8e7fd16b dummy commit to RUN BENCHMARKS 2018-07-25 18:07:56 -07:00
Adam Gleave
f272969325 GAIL: bugfix in dataset loading (#447)
* Fix silly typo

* Replace ad-hoc function with NumPy code
2018-07-06 16:12:14 -07:00
pzhokhov
a6b1bc70f1 re-import internal; fix missing tile_images.py (#427)
* import rl-algs from 2e3a166 commit

* extra import of the baselines badge

* exported commit with identity test

* proper rng seeding in the test_identity

* import internal

* adding missing tile_images.py
2018-06-08 09:41:45 -07:00
pzhokhov
36ee5d1707 Import internal changes (#422)
* import rl-algs from 2e3a166 commit

* extra import of the baselines badge

* exported commit with identity test

* proper rng seeding in the test_identity

* import internal
2018-06-06 11:39:13 -07:00
12 changed files with 181 additions and 33 deletions

View File

@@ -3,6 +3,7 @@ Helpers for scripts like run_atari.py.
"""
import os
from mpi4py import MPI
import gym
from gym.wrappers import FlattenDictWrapper
from baselines import logger
@@ -30,9 +31,10 @@ def make_mujoco_env(env_id, seed):
"""
Create a wrapped, monitored gym.Env for MuJoCo.
"""
set_global_seeds(seed)
rank = MPI.COMM_WORLD.Get_rank()
set_global_seeds(seed + 10000 * rank)
env = gym.make(env_id)
env = Monitor(env, logger.get_dir())
env = Monitor(env, os.path.join(logger.get_dir(), str(rank)))
env.seed(seed)
return env

View File

@@ -55,7 +55,6 @@ def make_session(num_cpu=None, make_default=False, graph=None):
tf_config = tf.ConfigProto(
inter_op_parallelism_threads=num_cpu,
intra_op_parallelism_threads=num_cpu)
tf_config.gpu_options.allocator_type = 'BFC'
if make_default:
return tf.InteractiveSession(config=tf_config, graph=graph)
else:

View File

@@ -0,0 +1,23 @@
import numpy as np
def tile_images(img_nhwc):
"""
Tile N images into one big PxQ image
(P,Q) are chosen to be as close as possible, and if N
is square, then P=Q.
input: img_nhwc, list or array of images, ndim=4 once turned into array
n = batch index, h = height, w = width, c = channel
returns:
bigim_HWc, ndarray with ndim=3
"""
img_nhwc = np.asarray(img_nhwc)
N, h, w, c = img_nhwc.shape
H = int(np.ceil(np.sqrt(N)))
W = int(np.ceil(float(N)/H))
img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in range(N, H*W)])
img_HWhwc = img_nhwc.reshape(H, W, h, w, c)
img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4)
img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c)
return img_Hh_Ww_c

View File

@@ -77,7 +77,7 @@ class VecEnv(ABC):
self.step_async(actions)
return self.step_wait()
def render(self):
def render(self, mode='human'):
logger.warn('Render not defined for %s'%self)
@property

View File

@@ -50,8 +50,8 @@ class DummyVecEnv(VecEnv):
def close(self):
return
def render(self):
return [e.render() for e in self.envs]
def render(self, mode='human'):
return [e.render(mode=mode) for e in self.envs]
def _save_obs(self, e, obs):
for k in self.keys:

View File

@@ -1,6 +1,7 @@
import numpy as np
from multiprocessing import Process, Pipe
from baselines.common.vec_env import VecEnv, CloudpickleWrapper
from baselines.common.tile_images import tile_images
def worker(remote, parent_remote, env_fn_wrapper):
@@ -16,9 +17,8 @@ def worker(remote, parent_remote, env_fn_wrapper):
elif cmd == 'reset':
ob = env.reset()
remote.send(ob)
elif cmd == 'reset_task':
ob = env.reset_task()
remote.send(ob)
elif cmd == 'render':
remote.send(env.render(mode='rgb_array'))
elif cmd == 'close':
remote.close()
break
@@ -81,3 +81,17 @@ class SubprocVecEnv(VecEnv):
for p in self.ps:
p.join()
self.closed = True
def render(self, mode='human'):
for pipe in self.remotes:
pipe.send(('render', None))
imgs = [pipe.recv() for pipe in self.remotes]
bigimg = tile_images(imgs)
if mode == 'human':
import cv2
cv2.imshow('vecenv', bigimg[:,:,::-1])
cv2.waitKey(1)
elif mode == 'rgb_array':
return bigimg
else:
raise NotImplementedError

View File

@@ -47,18 +47,12 @@ class Mujoco_Dset(object):
obs = traj_data['obs'][:traj_limitation]
acs = traj_data['acs'][:traj_limitation]
def flatten(x):
# x.shape = (E,), or (E, L, D)
_, size = x[0].shape
episode_length = [len(i) for i in x]
y = np.zeros((sum(episode_length), size))
start_idx = 0
for l, x_i in zip(episode_length, x):
y[start_idx:(start_idx+l)] = x_i
start_idx += l
return y
self.obs = np.array(flatten(obs))
self.acs = np.array(flatten(acs))
# obs, acs: shape (N, L, ) + S where N = # episodes, L = episode length
# and S is the environment observation/action space.
# Flatten to (N * L, prod(S))
self.obs = np.reshape(obs, [-1, np.prod(obs.shape[2:])])
self.acs = np.reshape(acs, [-1, np.prod(acs.shape[2:])])
self.rets = traj_data['ep_rets'][:traj_limitation]
self.avg_ret = sum(self.rets)/len(self.rets)
self.std_ret = np.std(np.array(self.rets))

View File

@@ -8,10 +8,6 @@ import datetime
import tempfile
from collections import defaultdict
LOG_OUTPUT_FORMATS = ['stdout', 'log', 'csv']
LOG_OUTPUT_FORMATS_MPI = ['log']
# Also valid: json, tensorboard
DEBUG = 10
INFO = 20
WARN = 30
@@ -75,8 +71,11 @@ class HumanOutputFormat(KVWriter, SeqWriter):
return s[:20] + '...' if len(s) > 23 else s
def writeseq(self, seq):
for arg in seq:
self.file.write(arg)
seq = list(seq)
for (i, elem) in enumerate(seq):
self.file.write(elem)
if i < len(seq) - 1: # add space unless this is the last one
self.file.write(' ')
self.file.write('\n')
self.file.flush()
@@ -363,13 +362,11 @@ def configure(dir=None, format_strs=None):
log_suffix = "-rank%03i" % rank
if format_strs is None:
strs, strs_mpi = os.getenv('OPENAI_LOG_FORMAT'), os.getenv('OPENAI_LOG_FORMAT_MPI')
format_strs = strs_mpi if rank>0 else strs
if format_strs is not None:
format_strs = format_strs.split(',')
if rank == 0:
format_strs = os.getenv('OPENAI_LOG_FORMAT', 'stdout,log,csv').split(',')
else:
format_strs = LOG_OUTPUT_FORMATS_MPI if rank>0 else LOG_OUTPUT_FORMATS
format_strs = os.getenv('OPENAI_LOG_FORMAT_MPI', 'log').split(',')
format_strs = filter(None, format_strs)
output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats)

View File

@@ -5,3 +5,5 @@
- `mpirun -np 8 python -m baselines.ppo1.run_atari` runs the algorithm for 40M frames = 10M timesteps on an Atari game. See help (`-h`) for more options.
- `python -m baselines.ppo1.run_mujoco` runs the algorithm for 1M frames on a Mujoco environment.
- Train mujoco 3d humanoid (with optimal-ish hyperparameters): `mpirun -np 16 python -m baselines.ppo1.run_humanoid --model-path=/path/to/model`
- Render the 3d humanoid: `python -m baselines.ppo1.run_humanoid --play --model-path=/path/to/model`

View File

@@ -212,5 +212,7 @@ def learn(env, policy_fn, *,
if MPI.COMM_WORLD.Get_rank()==0:
logger.dump_tabular()
return pi
def flatten_lists(listoflists):
return [el for list_ in listoflists for el in list_]

View File

@@ -0,0 +1,75 @@
#!/usr/bin/env python3
import os
from baselines.common.cmd_util import make_mujoco_env, mujoco_arg_parser
from baselines.common import tf_util as U
from baselines import logger
import gym
def train(num_timesteps, seed, model_path=None):
env_id = 'Humanoid-v2'
from baselines.ppo1 import mlp_policy, pposgd_simple
U.make_session(num_cpu=1).__enter__()
def policy_fn(name, ob_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=64, num_hid_layers=2)
env = make_mujoco_env(env_id, seed)
# parameters below were the best found in a simple random search
# these are good enough to make humanoid walk, but whether those are
# an absolute best or not is not certain
env = RewScale(env, 0.1)
pi = pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.2, entcoeff=0.0,
optim_epochs=10,
optim_stepsize=3e-4,
optim_batchsize=64,
gamma=0.99,
lam=0.95,
schedule='linear',
)
env.close()
if model_path:
U.save_state(model_path)
return pi
class RewScale(gym.RewardWrapper):
def __init__(self, env, scale):
gym.RewardWrapper.__init__(self, env)
self.scale = scale
def reward(self, r):
return r * self.scale
def main():
logger.configure()
parser = mujoco_arg_parser()
parser.add_argument('--model-path', default=os.path.join(logger.get_dir(), 'humanoid_policy'))
parser.set_defaults(num_timesteps=int(2e7))
args = parser.parse_args()
if not args.play:
# train the model
train(num_timesteps=args.num_timesteps, seed=args.seed, model_path=args.model_path)
else:
# construct the model object, load pre-trained model and render
pi = train(num_timesteps=1, seed=args.seed)
U.load_state(args.model_path)
env = make_mujoco_env('Humanoid-v2', seed=0)
ob = env.reset()
while True:
action = pi.act(stochastic=False, ob=ob)[0]
ob, _, done, _ = env.step(action)
env.render()
if done:
ob = env.reset()
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,40 @@
#!/usr/bin/env python3
from mpi4py import MPI
from baselines.common import set_global_seeds
from baselines import logger
from baselines.common.cmd_util import make_robotics_env, robotics_arg_parser
import mujoco_py
def train(env_id, num_timesteps, seed):
from baselines.ppo1 import mlp_policy, pposgd_simple
import baselines.common.tf_util as U
rank = MPI.COMM_WORLD.Get_rank()
sess = U.single_threaded_session()
sess.__enter__()
mujoco_py.ignore_mujoco_warnings().__enter__()
workerseed = seed + 10000 * rank
set_global_seeds(workerseed)
env = make_robotics_env(env_id, workerseed, rank=rank)
def policy_fn(name, ob_space, ac_space):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=256, num_hid_layers=3)
pposgd_simple.learn(env, policy_fn,
max_timesteps=num_timesteps,
timesteps_per_actorbatch=2048,
clip_param=0.2, entcoeff=0.0,
optim_epochs=5, optim_stepsize=3e-4, optim_batchsize=256,
gamma=0.99, lam=0.95, schedule='linear',
)
env.close()
def main():
args = robotics_arg_parser().parse_args()
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed)
if __name__ == '__main__':
main()