Compare commits

...

73 Commits

Author SHA1 Message Date
Peter Zhokhov
2c818245d6 dummy commit to RUN BENCHMARKS 2018-07-25 18:09:30 -07:00
Peter Zhokhov
ae8e7fd16b dummy commit to RUN BENCHMARKS 2018-07-25 18:07:56 -07:00
Adam Gleave
f272969325 GAIL: bugfix in dataset loading (#447)
* Fix silly typo

* Replace ad-hoc function with NumPy code
2018-07-06 16:12:14 -07:00
pzhokhov
a6b1bc70f1 re-import internal; fix missing tile_images.py (#427)
* import rl-algs from 2e3a166 commit

* extra import of the baselines badge

* exported commit with identity test

* proper rng seeding in the test_identity

* import internal

* adding missing tile_images.py
2018-06-08 09:41:45 -07:00
pzhokhov
36ee5d1707 Import internal changes (#422)
* import rl-algs from 2e3a166 commit

* extra import of the baselines badge

* exported commit with identity test

* proper rng seeding in the test_identity

* import internal
2018-06-06 11:39:13 -07:00
pzhokhov
24fe3d6576 Import internal repo (#409)
* import rl-algs from 2e3a166 commit

* extra import of the baselines badge

* exported commit with identity test

* proper rng seeding in the test_identity
2018-05-21 15:24:00 -07:00
pzhokhov
9cb7ece338 add opencv-python to the dependencies (#407) 2018-05-14 10:52:19 -07:00
pzhokhov
9cf95a0054 setup travis ci build (#388)
* simple .travis.yml file

* added static syntax checks of common to .travis.yml

* dockerizing the build

* fix Dockerfile, adding build shield

* cleaning up workdir in Dockerfile and .travis.yml

* .travis.yml fixed common -> baselines/common for style check
2018-05-03 09:43:28 -07:00
pzhokhov
8b781038cc put filters and running_stat files in common instead of acktr (#389) 2018-05-02 18:42:48 -07:00
pzhokhov
69f25c6028 import internal repo (#385) 2018-05-01 16:54:04 -07:00
pzhokhov
2b0283b9db Readme.md detailed installation instructions (#377)
* changes to README.md files with more detailed installation instructions

* md-fying the changes better

* link on the word homebrew in readme.md

* typos in README.md

* README.md

* removed extra comma sign

* removed sudo from brew command
2018-04-25 17:40:48 -07:00
Matthias Plappert
1f8a03f3a6 Update README 2018-03-26 16:50:22 +02:00
Matthias Plappert
3cc7df0608 Minor fixes to HER release (#319)
* Fix plotting script

* Add warning if num_cpu = 1
2018-03-05 11:06:17 +01:00
Alex Nichol
8b3a6c2051 fix DummyVecEnv reusing buffers 2018-03-02 17:18:07 -08:00
Alex Nichol
569bd42629 Merge pull request #308 from araffin/master
Bug fix in saving ACER model
2018-03-01 10:45:04 -08:00
Daniel Ziegler
f49a9c3d85 Fix bug in DDPG parameter space noise adaptation (#306)
The training loop used the rollout step variable `t` rather than the
training step variable `t_train` to decide when to adapt the scale of
the parameter space noise.
2018-03-01 18:00:34 +01:00
Antonin RAFFIN
14f2f9328c Bug fix in saving ACER model 2018-03-01 10:24:14 +01:00
Alex Nichol
6bdf2f55a2 Merge pull request #132 from bhatiaabhinav/bug_fixes
Bug fix in saving a2c model.
2018-02-27 19:00:37 -08:00
Alex Nichol
97be70d6c8 fixes for DummyVecEnv
Fixes various problems running MuJoCo tasks.
2018-02-27 18:55:10 -08:00
Matthias Plappert
b71152eea0 Adds support for Hindsight Experience Replay (HER) (#299)
* Add Hindsight Experience Replay (HER)

* Minor improvements
2018-02-26 17:40:16 +01:00
Christopher Hesse
df2e846ab7 export: fix accidental rename 2018-02-14 22:01:16 -08:00
Christopher Hesse
edb52c22a5 export: Fix deepq param noise refactoring, remove atari experiments and azure dependency 2018-02-14 21:42:22 -08:00
Andrei Kashin
98257ef8c9 Flush temporary file before compressing it.
We need to flush the buffer after `pickle.dump`, otherwise the resulting zip archive might be incomplete (reproducible, if the state consists of a single integer).
2018-02-06 07:04:44 -08:00
Oleg Klimov
d9b36601d9 comment about loading weights in ppo2 2018-02-05 12:25:05 -08:00
Oleg Klimov
2793971c10 fix gail tf_util usage 2018-02-05 07:51:27 -08:00
John Schulman
16d7d23b7d Merge pull request #271 from simontudo/add-requirement-cloudpickle
added cloudpickle to requirements
2018-02-02 23:04:53 -08:00
John Schulman
9175b770c6 Merge pull request #273 from simontudo/videorecorder-import
updated videorecorder import
2018-02-02 23:03:51 -08:00
simontudo
615870ad6b updated videorecorder import 2018-02-01 12:09:08 +01:00
simontudo
7bd264e0e9 added cloudpickle to requirements 2018-01-31 10:43:17 +01:00
John Schulman
8d03102d4d Merge pull request #265 from 20chase/patch-1
fix logger error for trpo_mpi
2018-01-29 00:54:51 -08:00
20chase
4a77855529 using mujoco_arg_parser as args
remove origin parser
2018-01-29 16:52:01 +08:00
John Schulman
2e29b41592 Merge pull request #268 from ei-grad/master
Fix fc call in AcerLstmPolicy
2018-01-27 18:42:31 -08:00
Andrew Grigorev
634e37c5b8 Fix fc call in AcerLstmPolicy
The `act` keyword was removed from baselines.a2c.utils.fc in commit 9fa8e1b.
2018-01-27 23:18:02 +03:00
20chase
452b548c2a Merge branch 'master' into patch-1 2018-01-26 14:34:01 +08:00
John Schulman
ebb8afff2e fix trpo_mpi bug where logstd wasn’t included 2018-01-25 21:17:40 -08:00
John Schulman
c9613b2293 Merge pull request #259 from andrewliao11/openai_gail
Add gail maintainer list
2018-01-25 20:54:34 -08:00
John Schulman
459f007bcc Merge pull request #260 from uidilr/master
Add GAIL
2018-01-25 20:54:20 -08:00
John Schulman
9fa8e1baf1 Lots of cleanups
Fixes for new gym version
Add @olegklimov and @unixpickle to authors list
2018-01-25 18:54:24 -08:00
20chase
ac2ea4f31f fix logger error for MPI
Can't run logger.configure() if rank != 0
2018-01-25 22:09:00 +08:00
Yusuke Nakata
d8cce2309f Add GAIL 2018-01-23 12:02:03 +09:00
andrew
0c207f0185 fix typo 2018-01-21 22:13:01 -08:00
andrew
41d41fabe3 add gail maintainer list 2018-01-21 22:12:03 -08:00
John Schulman
b5be53dc92 Merge pull request #229 from andrewliao11/gail
GAIL implementation
2018-01-21 20:30:20 -05:00
Matthias Plappert
49c1a8ec26 Fix bug in parameter space noise DQN 2018-01-16 10:24:30 -08:00
andrew
e5a714b070 fix relative import 2018-01-12 15:12:45 -08:00
John Schulman
f9d1d3349a remove mpirun from ppo2 instructions 2018-01-12 11:05:29 -08:00
Alex Nichol
8c90f67560 don't list TensorFlow as a requirement
fixes #146

A better (more involved) solution might be to check for a TensorFlow installation manually in setup.py and deal with that accordingly.
2017-12-15 15:54:43 -08:00
Andrew
f22bee085d Add files via upload 2017-12-12 19:03:42 -08:00
andrew
4acc71fe23 add x, y, axis name 2017-12-12 18:58:57 -08:00
andrew
2f1b629ecc Merge branch 'gail' of https://github.com/andrewliao11/baselines into gail 2017-12-12 18:56:00 -08:00
andrew
00573cf5e9 add x, y axis name 2017-12-12 18:54:03 -08:00
Andrew
cfa1236d78 Update README.md 2017-12-11 21:21:56 -08:00
Andrew
64288f9f84 Update gail-result.md 2017-12-11 21:19:47 -08:00
Andrew
5f647d4d34 Update README.md 2017-12-11 21:18:05 -08:00
Andrew
6723455b75 Update gail-result.md 2017-12-11 21:15:30 -08:00
Andrew
45a93cf2b9 add training curve from tensorboard 2017-12-11 21:06:04 -08:00
andrew
11604f7cc9 add download link to readme and add description to python file 2017-12-07 12:08:20 -08:00
John Schulman
2444034d11 Merge pull request #194 from ryanjulian/env_lines
Force shebang lines to Python 3
2017-12-04 14:07:01 -08:00
John Schulman
041b6b76b7 Merge pull request #215 from chris-chris/feature/typo-2017-11-19
fix misspellings
2017-12-04 14:02:49 -08:00
John Schulman
5d62b5bdaa Merge pull request #221 from jvmancuso/patch-1
Docstring fix
2017-12-04 14:01:38 -08:00
John Schulman
2fcc9b9572 Merge pull request #226 from definitelyuncertain/master
Call ppo2 and not ppo1 in ppo2 README.md
2017-12-04 14:01:12 -08:00
Andrew
000033973b Update gail-result.md 2017-12-03 15:50:24 -08:00
andrew
6090ee8292 add comparison for expert/BC/gail 2017-12-03 15:46:52 -08:00
andrew
7954327c5f add behavior cloning learn/eval code 2017-12-03 13:55:44 -08:00
andrew
8495890534 add gail, file_writer for tf.summary, and allow specifying var_list for tf.train.Saver 2017-12-03 01:49:42 -08:00
definitelyuncertain
643184935e Call ppo2 and not ppo1 2017-12-02 22:00:28 +05:30
jvmancuso
36e074da56 Update replay_buffer.py 2017-11-27 14:45:50 -05:00
Ubuntu
c33640932f fix misspellings 2017-11-19 01:29:30 +00:00
John Schulman
b05be68c55 add missing files, fix Issue #209 2017-11-16 22:14:30 -08:00
John Schulman
2dd7d307d7 Add ACER, PPO2, and results_plotter.py 2017-11-16 10:02:32 -08:00
Ryan Julian
df889caf11 Force shebang lines to Python 3
This is a Python 3-only library. A shebang with `#!/usr/bin/env python`
will launch python2 on many systems which do not have python3
installed. Setting the shebang to `#!/usr/bin/env python3` will show a
useful error on systems without Python 3.
2017-11-05 15:22:16 -08:00
John Schulman
6a3cbb4bc5 switch append mode to write mode 2017-10-25 22:20:30 -04:00
Abhinav Bhatia
3d1e171b3a Bug fix in saving a2c model. 2017-09-12 02:35:43 +08:00
141 changed files with 5819 additions and 2181 deletions

3
.gitignore vendored
View File

@@ -1,6 +1,8 @@
*.swp
*.pyc
*.pkl
*.py~
.pytest_cache
.DS_Store
.idea
@@ -33,3 +35,4 @@ src
MUJOCO_LOG.TXT

14
.travis.yml Normal file
View File

@@ -0,0 +1,14 @@
language: python
python:
- "3.6"
services:
- docker
install:
- pip install flake8
- docker build . -t baselines-test
script:
- flake8 --select=F baselines/common
- docker run baselines-test pytest

20
Dockerfile Normal file
View File

@@ -0,0 +1,20 @@
FROM ubuntu:16.04
RUN apt-get -y update && apt-get -y install git wget python-dev python3-dev libopenmpi-dev python-pip zlib1g-dev cmake
ENV CODE_DIR /root/code
ENV VENV /root/venv
COPY . $CODE_DIR/baselines
RUN \
pip install virtualenv && \
virtualenv $VENV --python=python3 && \
. $VENV/bin/activate && \
cd $CODE_DIR && \
pip install --upgrade pip && \
pip install -e baselines && \
pip install pytest
ENV PATH=$VENV/bin:$PATH
WORKDIR $CODE_DIR/baselines
CMD /bin/bash

View File

@@ -1,4 +1,4 @@
<img src="data/logo.jpg" width=25% align="right" />
<img src="data/logo.jpg" width=25% align="right" /> [![Build status](https://travis-ci.org/openai/baselines.svg?branch=master)](https://travis-ci.org/openai/baselines)
# Baselines
@@ -6,25 +6,79 @@ OpenAI Baselines is a set of high-quality implementations of reinforcement learn
These algorithms will make it easier for the research community to replicate, refine, and identify new ideas, and will create good baselines to build research on top of. Our DQN implementation and its variants are roughly on par with the scores in published papers. We expect they will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones.
You can install it by typing:
## Prerequisites
Baselines requires python3 (>=3.5) with the development headers. You'll also need system packages CMake, OpenMPI and zlib. Those can be installed as follows
### Ubuntu
```bash
sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev
```
### Mac OS X
Installation of system packages on Mac requires [Homebrew](https://brew.sh). With Homebrew installed, run the follwing:
```bash
brew install cmake openmpi
```
## Virtual environment
From the general python package sanity perspective, it is a good idea to use virtual environments (virtualenvs) to make sure packages from different projects do not interfere with each other. You can install virtualenv (which is itself a pip package) via
```bash
pip install virtualenv
```
Virtualenvs are essentially folders that have copies of python executable and all python packages.
To create a virtualenv called venv with python3, one runs
```bash
virtualenv /path/to/venv --python=python3
```
To activate a virtualenv:
```
. /path/to/venv/bin/activate
```
More thorough tutorial on virtualenvs and options can be found [here](https://virtualenv.pypa.io/en/stable/)
## Installation
Clone the repo and cd into it:
```bash
git clone https://github.com/openai/baselines.git
cd baselines
```
If using virtualenv, create a new virtualenv and activate it
```bash
virtualenv env --python=python3
. env/bin/activate
```
Install baselines package
```bash
pip install -e .
```
### MuJoCo
Some of the baselines examples use [MuJoCo](http://www.mujoco.org) (multi-joint dynamics in contact) physics simulator, which is proprietary and requires binaries and a license (temporary 30-day license can be obtained from [www.mujoco.org](http://www.mujoco.org)). Instructions on setting up MuJoCo can be found [here](https://github.com/openai/mujoco-py)
## Testing the installation
All unit tests in baselines can be run using pytest runner:
```
pip install pytest
pytest
```
## Subpackages
- [A2C](baselines/a2c)
- [ACER](baselines/acer)
- [ACKTR](baselines/acktr)
- [DDPG](baselines/ddpg)
- [DQN](baselines/deepq)
- [PPO](baselines/ppo1)
- [GAIL](baselines/gail)
- [HER](baselines/her)
- [PPO1](baselines/ppo1) (Multi-CPU using MPI)
- [PPO2](baselines/ppo2) (Optimized for GPU)
- [TRPO](baselines/trpo_mpi)
To cite this repository in publications:
@misc{baselines,
author = {Hesse, Christopher and Plappert, Matthias and Radford, Alec and Schulman, John and Sidor, Szymon and Wu, Yuhuai},
author = {Dhariwal, Prafulla and Hesse, Christopher and Klimov, Oleg and Nichol, Alex and Plappert, Matthias and Radford, Alec and Schulman, John and Sidor, Szymon and Wu, Yuhuai},
title = {OpenAI Baselines},
year = {2017},
publisher = {GitHub},

View File

@@ -1,32 +1,25 @@
import os.path as osp
import gym
import time
import joblib
import logging
import numpy as np
import tensorflow as tf
from baselines import logger
from baselines.common import set_global_seeds, explained_variance
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.atari_wrappers import wrap_deepmind
from baselines.common.runners import AbstractEnvRunner
from baselines.common import tf_util
from baselines.a2c.utils import discount_with_dones
from baselines.a2c.utils import Scheduler, make_path, find_trainable_variables
from baselines.a2c.policies import CnnPolicy
from baselines.a2c.utils import cat_entropy, mse
class Model(object):
def __init__(self, policy, ob_space, ac_space, nenvs, nsteps, nstack, num_procs,
def __init__(self, policy, ob_space, ac_space, nenvs, nsteps,
ent_coef=0.01, vf_coef=0.5, max_grad_norm=0.5, lr=7e-4,
alpha=0.99, epsilon=1e-5, total_timesteps=int(80e6), lrschedule='linear'):
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=num_procs,
inter_op_parallelism_threads=num_procs)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
nact = ac_space.n
sess = tf_util.make_session()
nbatch = nenvs*nsteps
A = tf.placeholder(tf.int32, [nbatch])
@@ -34,8 +27,8 @@ class Model(object):
R = tf.placeholder(tf.float32, [nbatch])
LR = tf.placeholder(tf.float32, [])
step_model = policy(sess, ob_space, ac_space, nenvs, 1, nstack, reuse=False)
train_model = policy(sess, ob_space, ac_space, nenvs, nsteps, nstack, reuse=True)
step_model = policy(sess, ob_space, ac_space, nenvs, 1, reuse=False)
train_model = policy(sess, ob_space, ac_space, nenvs*nsteps, nsteps, reuse=True)
neglogpac = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=train_model.pi, labels=A)
pg_loss = tf.reduce_mean(ADV * neglogpac)
@@ -58,7 +51,7 @@ class Model(object):
for step in range(len(obs)):
cur_lr = lr.value()
td_map = {train_model.X:obs, A:actions, ADV:advs, R:rewards, LR:cur_lr}
if states != []:
if states is not None:
td_map[train_model.S] = states
td_map[train_model.M] = masks
policy_loss, value_loss, policy_entropy, _ = sess.run(
@@ -69,7 +62,7 @@ class Model(object):
def save(save_path):
ps = sess.run(params)
make_path(save_path)
make_path(osp.dirname(save_path))
joblib.dump(ps, save_path)
def load(load_path):
@@ -77,7 +70,7 @@ class Model(object):
restores = []
for p, loaded_p in zip(params, loaded_params):
restores.append(p.assign(loaded_p))
ps = sess.run(restores)
sess.run(restores)
self.train = train
self.train_model = train_model
@@ -89,34 +82,17 @@ class Model(object):
self.load = load
tf.global_variables_initializer().run(session=sess)
class Runner(object):
class Runner(AbstractEnvRunner):
def __init__(self, env, model, nsteps=5, nstack=4, gamma=0.99):
self.env = env
self.model = model
nh, nw, nc = env.observation_space.shape
nenv = env.num_envs
self.batch_ob_shape = (nenv*nsteps, nh, nw, nc*nstack)
self.obs = np.zeros((nenv, nh, nw, nc*nstack), dtype=np.uint8)
self.nc = nc
obs = env.reset()
self.update_obs(obs)
def __init__(self, env, model, nsteps=5, gamma=0.99):
super().__init__(env=env, model=model, nsteps=nsteps)
self.gamma = gamma
self.nsteps = nsteps
self.states = model.initial_state
self.dones = [False for _ in range(nenv)]
def update_obs(self, obs):
# Do frame-stacking here instead of the FrameStack wrapper to reduce
# IPC overhead
self.obs = np.roll(self.obs, shift=-self.nc, axis=3)
self.obs[:, :, :, -self.nc:] = obs
def run(self):
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [],[],[],[],[]
mb_states = self.states
for n in range(self.nsteps):
actions, values, states = self.model.step(self.obs, self.states, self.dones)
actions, values, states, _ = self.model.step(self.obs, self.states, self.dones)
mb_obs.append(np.copy(self.obs))
mb_actions.append(actions)
mb_values.append(values)
@@ -127,7 +103,7 @@ class Runner(object):
for n, done in enumerate(dones):
if done:
self.obs[n] = self.obs[n]*0
self.update_obs(obs)
self.obs = obs
mb_rewards.append(rewards)
mb_dones.append(self.dones)
#batch of steps to batch of rollouts
@@ -154,17 +130,15 @@ class Runner(object):
mb_masks = mb_masks.flatten()
return mb_obs, mb_states, mb_rewards, mb_masks, mb_actions, mb_values
def learn(policy, env, seed, nsteps=5, nstack=4, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
tf.reset_default_graph()
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100):
set_global_seeds(seed)
nenvs = env.num_envs
ob_space = env.observation_space
ac_space = env.action_space
num_procs = len(env.remotes) # HACK
model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack, num_procs=num_procs, ent_coef=ent_coef, vf_coef=vf_coef,
model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule)
runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma)
runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
nbatch = nenvs*nsteps
tstart = time.time()
@@ -183,6 +157,4 @@ def learn(policy, env, seed, nsteps=5, nstack=4, total_timesteps=int(80e6), vf_c
logger.record_tabular("explained_variance", float(ev))
logger.dump_tabular()
env.close()
if __name__ == '__main__':
main()
return model

View File

@@ -1,36 +1,45 @@
import numpy as np
import tensorflow as tf
from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm, sample
from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm, lnlstm
from baselines.common.distributions import make_pdtype
from baselines.common.input import observation_input
def nature_cnn(unscaled_images, **conv_kwargs):
"""
CNN from Nature paper.
"""
scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
activ = tf.nn.relu
h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
**conv_kwargs))
h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
h3 = conv_to_fc(h3)
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
class LnLstmPolicy(object):
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, nlstm=256, reuse=False):
nbatch = nenv*nsteps
nh, nw, nc = ob_space.shape
ob_shape = (nbatch, nh, nw, nc*nstack)
nact = ac_space.n
X = tf.placeholder(tf.uint8, ob_shape) #obs
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
nenv = nbatch // nsteps
X, processed_x = observation_input(ob_space, nbatch)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
self.pdtype = make_pdtype(ac_space)
with tf.variable_scope("model", reuse=reuse):
h = conv(tf.cast(X, tf.float32)/255., 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2))
h2 = conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2))
h3 = conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2))
h3 = conv_to_fc(h3)
h4 = fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))
xs = batch_to_seq(h4, nenv, nsteps)
h = nature_cnn(processed_x)
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
h5, snew = lnlstm(xs, ms, S, 'lstm1', nh=nlstm)
h5 = seq_to_batch(h5)
pi = fc(h5, 'pi', nact, act=lambda x:x)
vf = fc(h5, 'v', 1, act=lambda x:x)
vf = fc(h5, 'v', 1)
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
v0 = vf[:, 0]
a0 = sample(pi)
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
def step(ob, state, mask):
a, v, s = sess.run([a0, v0, snew], {X:ob, S:state, M:mask})
return a, v, s
return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})
def value(ob, state, mask):
return sess.run(v0, {X:ob, S:state, M:mask})
@@ -38,41 +47,35 @@ class LnLstmPolicy(object):
self.X = X
self.M = M
self.S = S
self.pi = pi
self.vf = vf
self.step = step
self.value = value
class LstmPolicy(object):
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, nlstm=256, reuse=False):
nbatch = nenv*nsteps
nh, nw, nc = ob_space.shape
ob_shape = (nbatch, nh, nw, nc*nstack)
nact = ac_space.n
X = tf.placeholder(tf.uint8, ob_shape) #obs
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256, reuse=False):
nenv = nbatch // nsteps
self.pdtype = make_pdtype(ac_space)
X, processed_x = observation_input(ob_space, nbatch)
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
with tf.variable_scope("model", reuse=reuse):
h = conv(tf.cast(X, tf.float32)/255., 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2))
h2 = conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2))
h3 = conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2))
h3 = conv_to_fc(h3)
h4 = fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))
xs = batch_to_seq(h4, nenv, nsteps)
h = nature_cnn(X)
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
h5 = seq_to_batch(h5)
pi = fc(h5, 'pi', nact, act=lambda x:x)
vf = fc(h5, 'v', 1, act=lambda x:x)
vf = fc(h5, 'v', 1)
self.pd, self.pi = self.pdtype.pdfromlatent(h5)
v0 = vf[:, 0]
a0 = sample(pi)
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
def step(ob, state, mask):
a, v, s = sess.run([a0, v0, snew], {X:ob, S:state, M:mask})
return a, v, s
return sess.run([a0, v0, snew, neglogp0], {X:ob, S:state, M:mask})
def value(ob, state, mask):
return sess.run(v0, {X:ob, S:state, M:mask})
@@ -80,41 +83,64 @@ class LstmPolicy(object):
self.X = X
self.M = M
self.S = S
self.pi = pi
self.vf = vf
self.step = step
self.value = value
class CnnPolicy(object):
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False):
nbatch = nenv*nsteps
nh, nw, nc = ob_space.shape
ob_shape = (nbatch, nh, nw, nc*nstack)
nact = ac_space.n
X = tf.placeholder(tf.uint8, ob_shape) #obs
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False, **conv_kwargs): #pylint: disable=W0613
self.pdtype = make_pdtype(ac_space)
X, processed_x = observation_input(ob_space, nbatch)
with tf.variable_scope("model", reuse=reuse):
h = conv(tf.cast(X, tf.float32)/255., 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2))
h2 = conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2))
h3 = conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2))
h3 = conv_to_fc(h3)
h4 = fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))
pi = fc(h4, 'pi', nact, act=lambda x:x)
vf = fc(h4, 'v', 1, act=lambda x:x)
h = nature_cnn(processed_x, **conv_kwargs)
vf = fc(h, 'v', 1)[:,0]
self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01)
v0 = vf[:, 0]
a0 = sample(pi)
self.initial_state = [] #not stateful
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = None
def step(ob, *_args, **_kwargs):
a, v = sess.run([a0, v0], {X:ob})
return a, v, [] #dummy state
a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
return a, v, self.initial_state, neglogp
def value(ob, *_args, **_kwargs):
return sess.run(v0, {X:ob})
return sess.run(vf, {X:ob})
self.X = X
self.vf = vf
self.step = step
self.value = value
class MlpPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False): #pylint: disable=W0613
self.pdtype = make_pdtype(ac_space)
with tf.variable_scope("model", reuse=reuse):
X, processed_x = observation_input(ob_space, nbatch)
activ = tf.tanh
processed_x = tf.layers.flatten(processed_x)
pi_h1 = activ(fc(processed_x, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
pi_h2 = activ(fc(pi_h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
vf_h1 = activ(fc(processed_x, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
vf_h2 = activ(fc(vf_h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
vf = fc(vf_h2, 'vf', 1)[:,0]
self.pd, self.pi = self.pdtype.pdfromlatent(pi_h2, init_scale=0.01)
a0 = self.pd.sample()
neglogp0 = self.pd.neglogp(a0)
self.initial_state = None
def step(ob, *_args, **_kwargs):
a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob})
return a, v, self.initial_state, neglogp
def value(ob, *_args, **_kwargs):
return sess.run(vf, {X:ob})
self.X = X
self.pi = pi
self.vf = vf
self.step = step
self.value = value

View File

@@ -1,45 +1,30 @@
#!/usr/bin/env python
import os, logging, gym
from baselines import logger
from baselines.common import set_global_seeds
from baselines import bench
from baselines.a2c.a2c import learn
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
from baselines.a2c.policies import CnnPolicy, LstmPolicy, LnLstmPolicy
#!/usr/bin/env python3
def train(env_id, num_timesteps, seed, policy, lrschedule, num_cpu):
def make_env(rank):
def _thunk():
env = make_atari(env_id)
env.seed(seed + rank)
env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
gym.logger.setLevel(logging.WARN)
return wrap_deepmind(env)
return _thunk
set_global_seeds(seed)
env = SubprocVecEnv([make_env(i) for i in range(num_cpu)])
from baselines import logger
from baselines.common.cmd_util import make_atari_env, atari_arg_parser
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.a2c.a2c import learn
from baselines.ppo2.policies import CnnPolicy, LstmPolicy, LnLstmPolicy
def train(env_id, num_timesteps, seed, policy, lrschedule, num_env):
if policy == 'cnn':
policy_fn = CnnPolicy
elif policy == 'lstm':
policy_fn = LstmPolicy
elif policy == 'lnlstm':
policy_fn = LnLstmPolicy
env = VecFrameStack(make_atari_env(env_id, num_env, seed), 4)
learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), lrschedule=lrschedule)
env.close()
def main():
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--env', help='environment ID', default='BreakoutNoFrameskip-v4')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser = atari_arg_parser()
parser.add_argument('--policy', help='Policy architecture', choices=['cnn', 'lstm', 'lnlstm'], default='cnn')
parser.add_argument('--lrschedule', help='Learning rate schedule', choices=['constant', 'linear'], default='constant')
parser.add_argument('--num-timesteps', type=int, default=int(10e6))
args = parser.parse_args()
logger.configure()
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed,
policy=args.policy, lrschedule=args.lrschedule, num_cpu=16)
policy=args.policy, lrschedule=args.lrschedule, num_env=16)
if __name__ == '__main__':
main()

View File

@@ -39,23 +39,33 @@ def ortho_init(scale=1.0):
return (scale * q[:shape[0], :shape[1]]).astype(np.float32)
return _ortho_init
def conv(x, scope, nf, rf, stride, pad='VALID', act=tf.nn.relu, init_scale=1.0):
def conv(x, scope, *, nf, rf, stride, pad='VALID', init_scale=1.0, data_format='NHWC', one_dim_bias=False):
if data_format == 'NHWC':
channel_ax = 3
strides = [1, stride, stride, 1]
bshape = [1, 1, 1, nf]
elif data_format == 'NCHW':
channel_ax = 1
strides = [1, 1, stride, stride]
bshape = [1, nf, 1, 1]
else:
raise NotImplementedError
bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1]
nin = x.get_shape()[channel_ax].value
wshape = [rf, rf, nin, nf]
with tf.variable_scope(scope):
nin = x.get_shape()[3].value
w = tf.get_variable("w", [rf, rf, nin, nf], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nf], initializer=tf.constant_initializer(0.0))
z = tf.nn.conv2d(x, w, strides=[1, stride, stride, 1], padding=pad)+b
h = act(z)
return h
w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale))
b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0))
if not one_dim_bias and data_format == 'NHWC':
b = tf.reshape(b, bshape)
return b + tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format)
def fc(x, scope, nh, act=tf.nn.relu, init_scale=1.0):
def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0):
with tf.variable_scope(scope):
nin = x.get_shape()[1].value
w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(0.0))
z = tf.matmul(x, w)+b
h = act(z)
return h
b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias))
return tf.matmul(x, w)+b
def batch_to_seq(h, nbatch, nsteps, flat=False):
if flat:
@@ -162,9 +172,34 @@ def constant(p):
def linear(p):
return 1-p
def middle_drop(p):
eps = 0.75
if 1-p<eps:
return eps*0.1
return 1-p
def double_linear_con(p):
p *= 2
eps = 0.125
if 1-p<eps:
return eps
return 1-p
def double_middle_drop(p):
eps1 = 0.75
eps2 = 0.25
if 1-p<eps1:
if 1-p<eps2:
return eps2*0.5
return eps1*0.1
return 1-p
schedules = {
'linear':linear,
'constant':constant
'constant':constant,
'double_linear_con': double_linear_con,
'middle_drop': middle_drop,
'double_middle_drop': double_middle_drop
}
class Scheduler(object):
@@ -238,7 +273,7 @@ def check_shape(ts,shapes):
def avg_norm(t):
return tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(t), axis=-1)))
def myadd(g1, g2, param):
def gradient_add(g1, g2, param):
print([g1, g2, param.name])
assert (not (g1 is None and g2 is None)), param.name
if g1 is None:
@@ -248,7 +283,7 @@ def myadd(g1, g2, param):
else:
return g1 + g2
def my_explained_variance(qpred, q):
def q_explained_variance(qpred, q):
_, vary = tf.nn.moments(q, axes=[0, 1])
_, varpred = tf.nn.moments(q - qpred, axes=[0, 1])
check_shape([vary, varpred], [[]] * 2)

4
baselines/acer/README.md Normal file
View File

@@ -0,0 +1,4 @@
# ACER
- Original paper: https://arxiv.org/abs/1611.01224
- `python -m baselines.acer.run_atari` runs the algorithm for 40M frames = 10M timesteps on an Atari game. See help (`-h`) for more options.

View File

@@ -0,0 +1,348 @@
import time
import joblib
import numpy as np
import tensorflow as tf
from baselines import logger
from baselines.common import set_global_seeds
from baselines.common.runners import AbstractEnvRunner
from baselines.a2c.utils import batch_to_seq, seq_to_batch
from baselines.a2c.utils import Scheduler, make_path, find_trainable_variables
from baselines.a2c.utils import cat_entropy_softmax
from baselines.a2c.utils import EpisodeStats
from baselines.a2c.utils import get_by_index, check_shape, avg_norm, gradient_add, q_explained_variance
from baselines.acer.buffer import Buffer
import os.path as osp
# remove last step
def strip(var, nenvs, nsteps, flat = False):
vars = batch_to_seq(var, nenvs, nsteps + 1, flat)
return seq_to_batch(vars[:-1], flat)
def q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma):
"""
Calculates q_retrace targets
:param R: Rewards
:param D: Dones
:param q_i: Q values for actions taken
:param v: V values
:param rho_i: Importance weight for each action
:return: Q_retrace values
"""
rho_bar = batch_to_seq(tf.minimum(1.0, rho_i), nenvs, nsteps, True) # list of len steps, shape [nenvs]
rs = batch_to_seq(R, nenvs, nsteps, True) # list of len steps, shape [nenvs]
ds = batch_to_seq(D, nenvs, nsteps, True) # list of len steps, shape [nenvs]
q_is = batch_to_seq(q_i, nenvs, nsteps, True)
vs = batch_to_seq(v, nenvs, nsteps + 1, True)
v_final = vs[-1]
qret = v_final
qrets = []
for i in range(nsteps - 1, -1, -1):
check_shape([qret, ds[i], rs[i], rho_bar[i], q_is[i], vs[i]], [[nenvs]] * 6)
qret = rs[i] + gamma * qret * (1.0 - ds[i])
qrets.append(qret)
qret = (rho_bar[i] * (qret - q_is[i])) + vs[i]
qrets = qrets[::-1]
qret = seq_to_batch(qrets, flat=True)
return qret
# For ACER with PPO clipping instead of trust region
# def clip(ratio, eps_clip):
# # assume 0 <= eps_clip <= 1
# return tf.minimum(1 + eps_clip, tf.maximum(1 - eps_clip, ratio))
class Model(object):
def __init__(self, policy, ob_space, ac_space, nenvs, nsteps, nstack, num_procs,
ent_coef, q_coef, gamma, max_grad_norm, lr,
rprop_alpha, rprop_epsilon, total_timesteps, lrschedule,
c, trust_region, alpha, delta):
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=num_procs,
inter_op_parallelism_threads=num_procs)
sess = tf.Session(config=config)
nact = ac_space.n
nbatch = nenvs * nsteps
A = tf.placeholder(tf.int32, [nbatch]) # actions
D = tf.placeholder(tf.float32, [nbatch]) # dones
R = tf.placeholder(tf.float32, [nbatch]) # rewards, not returns
MU = tf.placeholder(tf.float32, [nbatch, nact]) # mu's
LR = tf.placeholder(tf.float32, [])
eps = 1e-6
step_model = policy(sess, ob_space, ac_space, nenvs, 1, nstack, reuse=False)
train_model = policy(sess, ob_space, ac_space, nenvs, nsteps + 1, nstack, reuse=True)
params = find_trainable_variables("model")
print("Params {}".format(len(params)))
for var in params:
print(var)
# create polyak averaged model
ema = tf.train.ExponentialMovingAverage(alpha)
ema_apply_op = ema.apply(params)
def custom_getter(getter, *args, **kwargs):
v = ema.average(getter(*args, **kwargs))
print(v.name)
return v
with tf.variable_scope("", custom_getter=custom_getter, reuse=True):
polyak_model = policy(sess, ob_space, ac_space, nenvs, nsteps + 1, nstack, reuse=True)
# Notation: (var) = batch variable, (var)s = seqeuence variable, (var)_i = variable index by action at step i
v = tf.reduce_sum(train_model.pi * train_model.q, axis = -1) # shape is [nenvs * (nsteps + 1)]
# strip off last step
f, f_pol, q = map(lambda var: strip(var, nenvs, nsteps), [train_model.pi, polyak_model.pi, train_model.q])
# Get pi and q values for actions taken
f_i = get_by_index(f, A)
q_i = get_by_index(q, A)
# Compute ratios for importance truncation
rho = f / (MU + eps)
rho_i = get_by_index(rho, A)
# Calculate Q_retrace targets
qret = q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma)
# Calculate losses
# Entropy
entropy = tf.reduce_mean(cat_entropy_softmax(f))
# Policy Graident loss, with truncated importance sampling & bias correction
v = strip(v, nenvs, nsteps, True)
check_shape([qret, v, rho_i, f_i], [[nenvs * nsteps]] * 4)
check_shape([rho, f, q], [[nenvs * nsteps, nact]] * 2)
# Truncated importance sampling
adv = qret - v
logf = tf.log(f_i + eps)
gain_f = logf * tf.stop_gradient(adv * tf.minimum(c, rho_i)) # [nenvs * nsteps]
loss_f = -tf.reduce_mean(gain_f)
# Bias correction for the truncation
adv_bc = (q - tf.reshape(v, [nenvs * nsteps, 1])) # [nenvs * nsteps, nact]
logf_bc = tf.log(f + eps) # / (f_old + eps)
check_shape([adv_bc, logf_bc], [[nenvs * nsteps, nact]]*2)
gain_bc = tf.reduce_sum(logf_bc * tf.stop_gradient(adv_bc * tf.nn.relu(1.0 - (c / (rho + eps))) * f), axis = 1) #IMP: This is sum, as expectation wrt f
loss_bc= -tf.reduce_mean(gain_bc)
loss_policy = loss_f + loss_bc
# Value/Q function loss, and explained variance
check_shape([qret, q_i], [[nenvs * nsteps]]*2)
ev = q_explained_variance(tf.reshape(q_i, [nenvs, nsteps]), tf.reshape(qret, [nenvs, nsteps]))
loss_q = tf.reduce_mean(tf.square(tf.stop_gradient(qret) - q_i)*0.5)
# Net loss
check_shape([loss_policy, loss_q, entropy], [[]] * 3)
loss = loss_policy + q_coef * loss_q - ent_coef * entropy
if trust_region:
g = tf.gradients(- (loss_policy - ent_coef * entropy) * nsteps * nenvs, f) #[nenvs * nsteps, nact]
# k = tf.gradients(KL(f_pol || f), f)
k = - f_pol / (f + eps) #[nenvs * nsteps, nact] # Directly computed gradient of KL divergence wrt f
k_dot_g = tf.reduce_sum(k * g, axis=-1)
adj = tf.maximum(0.0, (tf.reduce_sum(k * g, axis=-1) - delta) / (tf.reduce_sum(tf.square(k), axis=-1) + eps)) #[nenvs * nsteps]
# Calculate stats (before doing adjustment) for logging.
avg_norm_k = avg_norm(k)
avg_norm_g = avg_norm(g)
avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g))
avg_norm_adj = tf.reduce_mean(tf.abs(adj))
g = g - tf.reshape(adj, [nenvs * nsteps, 1]) * k
grads_f = -g/(nenvs*nsteps) # These are turst region adjusted gradients wrt f ie statistics of policy pi
grads_policy = tf.gradients(f, params, grads_f)
grads_q = tf.gradients(loss_q * q_coef, params)
grads = [gradient_add(g1, g2, param) for (g1, g2, param) in zip(grads_policy, grads_q, params)]
avg_norm_grads_f = avg_norm(grads_f) * (nsteps * nenvs)
norm_grads_q = tf.global_norm(grads_q)
norm_grads_policy = tf.global_norm(grads_policy)
else:
grads = tf.gradients(loss, params)
if max_grad_norm is not None:
grads, norm_grads = tf.clip_by_global_norm(grads, max_grad_norm)
grads = list(zip(grads, params))
trainer = tf.train.RMSPropOptimizer(learning_rate=LR, decay=rprop_alpha, epsilon=rprop_epsilon)
_opt_op = trainer.apply_gradients(grads)
# so when you call _train, you first do the gradient step, then you apply ema
with tf.control_dependencies([_opt_op]):
_train = tf.group(ema_apply_op)
lr = Scheduler(v=lr, nvalues=total_timesteps, schedule=lrschedule)
# Ops/Summaries to run, and their names for logging
run_ops = [_train, loss, loss_q, entropy, loss_policy, loss_f, loss_bc, ev, norm_grads]
names_ops = ['loss', 'loss_q', 'entropy', 'loss_policy', 'loss_f', 'loss_bc', 'explained_variance',
'norm_grads']
if trust_region:
run_ops = run_ops + [norm_grads_q, norm_grads_policy, avg_norm_grads_f, avg_norm_k, avg_norm_g, avg_norm_k_dot_g,
avg_norm_adj]
names_ops = names_ops + ['norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f', 'avg_norm_k', 'avg_norm_g',
'avg_norm_k_dot_g', 'avg_norm_adj']
def train(obs, actions, rewards, dones, mus, states, masks, steps):
cur_lr = lr.value_steps(steps)
td_map = {train_model.X: obs, polyak_model.X: obs, A: actions, R: rewards, D: dones, MU: mus, LR: cur_lr}
if states != []:
td_map[train_model.S] = states
td_map[train_model.M] = masks
td_map[polyak_model.S] = states
td_map[polyak_model.M] = masks
return names_ops, sess.run(run_ops, td_map)[1:] # strip off _train
def save(save_path):
ps = sess.run(params)
make_path(osp.dirname(save_path))
joblib.dump(ps, save_path)
self.train = train
self.save = save
self.train_model = train_model
self.step_model = step_model
self.step = step_model.step
self.initial_state = step_model.initial_state
tf.global_variables_initializer().run(session=sess)
class Runner(AbstractEnvRunner):
def __init__(self, env, model, nsteps, nstack):
super().__init__(env=env, model=model, nsteps=nsteps)
self.nstack = nstack
nh, nw, nc = env.observation_space.shape
self.nc = nc # nc = 1 for atari, but just in case
self.nenv = nenv = env.num_envs
self.nact = env.action_space.n
self.nbatch = nenv * nsteps
self.batch_ob_shape = (nenv*(nsteps+1), nh, nw, nc*nstack)
self.obs = np.zeros((nenv, nh, nw, nc * nstack), dtype=np.uint8)
obs = env.reset()
self.update_obs(obs)
def update_obs(self, obs, dones=None):
if dones is not None:
self.obs *= (1 - dones.astype(np.uint8))[:, None, None, None]
self.obs = np.roll(self.obs, shift=-self.nc, axis=3)
self.obs[:, :, :, -self.nc:] = obs[:, :, :, :]
def run(self):
enc_obs = np.split(self.obs, self.nstack, axis=3) # so now list of obs steps
mb_obs, mb_actions, mb_mus, mb_dones, mb_rewards = [], [], [], [], []
for _ in range(self.nsteps):
actions, mus, states = self.model.step(self.obs, state=self.states, mask=self.dones)
mb_obs.append(np.copy(self.obs))
mb_actions.append(actions)
mb_mus.append(mus)
mb_dones.append(self.dones)
obs, rewards, dones, _ = self.env.step(actions)
# states information for statefull models like LSTM
self.states = states
self.dones = dones
self.update_obs(obs, dones)
mb_rewards.append(rewards)
enc_obs.append(obs)
mb_obs.append(np.copy(self.obs))
mb_dones.append(self.dones)
enc_obs = np.asarray(enc_obs, dtype=np.uint8).swapaxes(1, 0)
mb_obs = np.asarray(mb_obs, dtype=np.uint8).swapaxes(1, 0)
mb_actions = np.asarray(mb_actions, dtype=np.int32).swapaxes(1, 0)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0)
mb_mus = np.asarray(mb_mus, dtype=np.float32).swapaxes(1, 0)
mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0)
mb_masks = mb_dones # Used for statefull models like LSTM's to mask state when done
mb_dones = mb_dones[:, 1:] # Used for calculating returns. The dones array is now aligned with rewards
# shapes are now [nenv, nsteps, []]
# When pulling from buffer, arrays will now be reshaped in place, preventing a deep copy.
return enc_obs, mb_obs, mb_actions, mb_rewards, mb_mus, mb_dones, mb_masks
class Acer():
def __init__(self, runner, model, buffer, log_interval):
self.runner = runner
self.model = model
self.buffer = buffer
self.log_interval = log_interval
self.tstart = None
self.episode_stats = EpisodeStats(runner.nsteps, runner.nenv)
self.steps = None
def call(self, on_policy):
runner, model, buffer, steps = self.runner, self.model, self.buffer, self.steps
if on_policy:
enc_obs, obs, actions, rewards, mus, dones, masks = runner.run()
self.episode_stats.feed(rewards, dones)
if buffer is not None:
buffer.put(enc_obs, actions, rewards, mus, dones, masks)
else:
# get obs, actions, rewards, mus, dones from buffer.
obs, actions, rewards, mus, dones, masks = buffer.get()
# reshape stuff correctly
obs = obs.reshape(runner.batch_ob_shape)
actions = actions.reshape([runner.nbatch])
rewards = rewards.reshape([runner.nbatch])
mus = mus.reshape([runner.nbatch, runner.nact])
dones = dones.reshape([runner.nbatch])
masks = masks.reshape([runner.batch_ob_shape[0]])
names_ops, values_ops = model.train(obs, actions, rewards, dones, mus, model.initial_state, masks, steps)
if on_policy and (int(steps/runner.nbatch) % self.log_interval == 0):
logger.record_tabular("total_timesteps", steps)
logger.record_tabular("fps", int(steps/(time.time() - self.tstart)))
# IMP: In EpisodicLife env, during training, we get done=True at each loss of life, not just at the terminal state.
# Thus, this is mean until end of life, not end of episode.
# For true episode rewards, see the monitor files in the log folder.
logger.record_tabular("mean_episode_length", self.episode_stats.mean_length())
logger.record_tabular("mean_episode_reward", self.episode_stats.mean_reward())
for name, val in zip(names_ops, values_ops):
logger.record_tabular(name, float(val))
logger.dump_tabular()
def learn(policy, env, seed, nsteps=20, nstack=4, total_timesteps=int(80e6), q_coef=0.5, ent_coef=0.01,
max_grad_norm=10, lr=7e-4, lrschedule='linear', rprop_epsilon=1e-5, rprop_alpha=0.99, gamma=0.99,
log_interval=100, buffer_size=50000, replay_ratio=4, replay_start=10000, c=10.0,
trust_region=True, alpha=0.99, delta=1):
print("Running Acer Simple")
print(locals())
tf.reset_default_graph()
set_global_seeds(seed)
nenvs = env.num_envs
ob_space = env.observation_space
ac_space = env.action_space
num_procs = len(env.remotes) # HACK
model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack,
num_procs=num_procs, ent_coef=ent_coef, q_coef=q_coef, gamma=gamma,
max_grad_norm=max_grad_norm, lr=lr, rprop_alpha=rprop_alpha, rprop_epsilon=rprop_epsilon,
total_timesteps=total_timesteps, lrschedule=lrschedule, c=c,
trust_region=trust_region, alpha=alpha, delta=delta)
runner = Runner(env=env, model=model, nsteps=nsteps, nstack=nstack)
if replay_ratio > 0:
buffer = Buffer(env=env, nsteps=nsteps, nstack=nstack, size=buffer_size)
else:
buffer = None
nbatch = nenvs*nsteps
acer = Acer(runner, model, buffer, log_interval)
acer.tstart = time.time()
for acer.steps in range(0, total_timesteps, nbatch): #nbatch samples, 1 on_policy call and multiple off-policy calls
acer.call(on_policy=True)
if replay_ratio > 0 and buffer.has_atleast(replay_start):
n = np.random.poisson(replay_ratio)
for _ in range(n):
acer.call(on_policy=False) # no simulation steps in this
env.close()

103
baselines/acer/buffer.py Normal file
View File

@@ -0,0 +1,103 @@
import numpy as np
class Buffer(object):
# gets obs, actions, rewards, mu's, (states, masks), dones
def __init__(self, env, nsteps, nstack, size=50000):
self.nenv = env.num_envs
self.nsteps = nsteps
self.nh, self.nw, self.nc = env.observation_space.shape
self.nstack = nstack
self.nbatch = self.nenv * self.nsteps
self.size = size // (self.nsteps) # Each loc contains nenv * nsteps frames, thus total buffer is nenv * size frames
# Memory
self.enc_obs = None
self.actions = None
self.rewards = None
self.mus = None
self.dones = None
self.masks = None
# Size indexes
self.next_idx = 0
self.num_in_buffer = 0
def has_atleast(self, frames):
# Frames per env, so total (nenv * frames) Frames needed
# Each buffer loc has nenv * nsteps frames
return self.num_in_buffer >= (frames // self.nsteps)
def can_sample(self):
return self.num_in_buffer > 0
# Generate stacked frames
def decode(self, enc_obs, dones):
# enc_obs has shape [nenvs, nsteps + nstack, nh, nw, nc]
# dones has shape [nenvs, nsteps, nh, nw, nc]
# returns stacked obs of shape [nenv, (nsteps + 1), nh, nw, nstack*nc]
nstack, nenv, nsteps, nh, nw, nc = self.nstack, self.nenv, self.nsteps, self.nh, self.nw, self.nc
y = np.empty([nsteps + nstack - 1, nenv, 1, 1, 1], dtype=np.float32)
obs = np.zeros([nstack, nsteps + nstack, nenv, nh, nw, nc], dtype=np.uint8)
x = np.reshape(enc_obs, [nenv, nsteps + nstack, nh, nw, nc]).swapaxes(1,
0) # [nsteps + nstack, nenv, nh, nw, nc]
y[3:] = np.reshape(1.0 - dones, [nenv, nsteps, 1, 1, 1]).swapaxes(1, 0) # keep
y[:3] = 1.0
# y = np.reshape(1 - dones, [nenvs, nsteps, 1, 1, 1])
for i in range(nstack):
obs[-(i + 1), i:] = x
# obs[:,i:,:,:,-(i+1),:] = x
x = x[:-1] * y
y = y[1:]
return np.reshape(obs[:, 3:].transpose((2, 1, 3, 4, 0, 5)), [nenv, (nsteps + 1), nh, nw, nstack * nc])
def put(self, enc_obs, actions, rewards, mus, dones, masks):
# enc_obs [nenv, (nsteps + nstack), nh, nw, nc]
# actions, rewards, dones [nenv, nsteps]
# mus [nenv, nsteps, nact]
if self.enc_obs is None:
self.enc_obs = np.empty([self.size] + list(enc_obs.shape), dtype=np.uint8)
self.actions = np.empty([self.size] + list(actions.shape), dtype=np.int32)
self.rewards = np.empty([self.size] + list(rewards.shape), dtype=np.float32)
self.mus = np.empty([self.size] + list(mus.shape), dtype=np.float32)
self.dones = np.empty([self.size] + list(dones.shape), dtype=np.bool)
self.masks = np.empty([self.size] + list(masks.shape), dtype=np.bool)
self.enc_obs[self.next_idx] = enc_obs
self.actions[self.next_idx] = actions
self.rewards[self.next_idx] = rewards
self.mus[self.next_idx] = mus
self.dones[self.next_idx] = dones
self.masks[self.next_idx] = masks
self.next_idx = (self.next_idx + 1) % self.size
self.num_in_buffer = min(self.size, self.num_in_buffer + 1)
def take(self, x, idx, envx):
nenv = self.nenv
out = np.empty([nenv] + list(x.shape[2:]), dtype=x.dtype)
for i in range(nenv):
out[i] = x[idx[i], envx[i]]
return out
def get(self):
# returns
# obs [nenv, (nsteps + 1), nh, nw, nstack*nc]
# actions, rewards, dones [nenv, nsteps]
# mus [nenv, nsteps, nact]
nenv = self.nenv
assert self.can_sample()
# Sample exactly one id per env. If you sample across envs, then higher correlation in samples from same env.
idx = np.random.randint(0, self.num_in_buffer, nenv)
envx = np.arange(nenv)
take = lambda x: self.take(x, idx, envx) # for i in range(nenv)], axis = 0)
dones = take(self.dones)
enc_obs = take(self.enc_obs)
obs = self.decode(enc_obs, dones)
actions = take(self.actions)
rewards = take(self.rewards)
mus = take(self.mus)
masks = take(self.masks)
return obs, actions, rewards, mus, dones, masks

View File

@@ -0,0 +1,79 @@
import numpy as np
import tensorflow as tf
from baselines.ppo2.policies import nature_cnn
from baselines.a2c.utils import fc, batch_to_seq, seq_to_batch, lstm, sample
class AcerCnnPolicy(object):
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False):
nbatch = nenv * nsteps
nh, nw, nc = ob_space.shape
ob_shape = (nbatch, nh, nw, nc * nstack)
nact = ac_space.n
X = tf.placeholder(tf.uint8, ob_shape) # obs
with tf.variable_scope("model", reuse=reuse):
h = nature_cnn(X)
pi_logits = fc(h, 'pi', nact, init_scale=0.01)
pi = tf.nn.softmax(pi_logits)
q = fc(h, 'q', nact)
a = sample(pi_logits) # could change this to use self.pi instead
self.initial_state = [] # not stateful
self.X = X
self.pi = pi # actual policy params now
self.q = q
def step(ob, *args, **kwargs):
# returns actions, mus, states
a0, pi0 = sess.run([a, pi], {X: ob})
return a0, pi0, [] # dummy state
def out(ob, *args, **kwargs):
pi0, q0 = sess.run([pi, q], {X: ob})
return pi0, q0
def act(ob, *args, **kwargs):
return sess.run(a, {X: ob})
self.step = step
self.out = out
self.act = act
class AcerLstmPolicy(object):
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False, nlstm=256):
nbatch = nenv * nsteps
nh, nw, nc = ob_space.shape
ob_shape = (nbatch, nh, nw, nc * nstack)
nact = ac_space.n
X = tf.placeholder(tf.uint8, ob_shape) # obs
M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1)
S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states
with tf.variable_scope("model", reuse=reuse):
h = nature_cnn(X)
# lstm
xs = batch_to_seq(h, nenv, nsteps)
ms = batch_to_seq(M, nenv, nsteps)
h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
h5 = seq_to_batch(h5)
pi_logits = fc(h5, 'pi', nact, init_scale=0.01)
pi = tf.nn.softmax(pi_logits)
q = fc(h5, 'q', nact)
a = sample(pi_logits) # could change this to use self.pi instead
self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32)
self.X = X
self.M = M
self.S = S
self.pi = pi # actual policy params now
self.q = q
def step(ob, state, mask, *args, **kwargs):
# returns actions, mus, states
a0, pi0, s = sess.run([a, pi, snew], {X: ob, S: state, M: mask})
return a0, pi0, s
self.step = step

View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python3
from baselines import logger
from baselines.acer.acer_simple import learn
from baselines.acer.policies import AcerCnnPolicy, AcerLstmPolicy
from baselines.common.cmd_util import make_atari_env, atari_arg_parser
def train(env_id, num_timesteps, seed, policy, lrschedule, num_cpu):
env = make_atari_env(env_id, num_cpu, seed)
if policy == 'cnn':
policy_fn = AcerCnnPolicy
elif policy == 'lstm':
policy_fn = AcerLstmPolicy
else:
print("Policy {} not implemented".format(policy))
return
learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), lrschedule=lrschedule)
env.close()
def main():
parser = atari_arg_parser()
parser.add_argument('--policy', help='Policy architecture', choices=['cnn', 'lstm', 'lnlstm'], default='cnn')
parser.add_argument('--lrschedule', help='Learning rate schedule', choices=['constant', 'linear'], default='constant')
parser.add_argument('--logdir', help ='Directory for logging')
args = parser.parse_args()
logger.configure(args.logdir)
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed,
policy=args.policy, lrschedule=args.lrschedule, num_cpu=16)
if __name__ == '__main__':
main()

View File

@@ -1,10 +1,10 @@
import numpy as np
import tensorflow as tf
from baselines import logger
from baselines import common
import baselines.common as common
from baselines.common import tf_util as U
from baselines.acktr import kfac
from baselines.acktr.filters import ZFilter
from baselines.common.filters import ZFilter
def pathlength(path):
return path["reward"].shape[0]# Loss function that we'll differentiate to get the policy gradient
@@ -70,7 +70,7 @@ def learn(env, policy, vf, gamma, lam, timesteps_per_batch, num_timesteps,
coord = tf.train.Coordinator()
for qr in [q_runner, vf.q_runner]:
assert (qr != None)
enqueue_threads.extend(qr.create_threads(U.get_session(), coord=coord, start=True))
enqueue_threads.extend(qr.create_threads(tf.get_default_session(), coord=coord, start=True))
i = 0
timesteps_so_far = 0
@@ -122,10 +122,10 @@ def learn(env, policy, vf, gamma, lam, timesteps_per_batch, num_timesteps,
kl = policy.compute_kl(ob_no, oldac_dist)
if kl > desired_kl * 2:
logger.log("kl too high")
U.eval(tf.assign(stepsize, tf.maximum(min_stepsize, stepsize / 1.5)))
tf.assign(stepsize, tf.maximum(min_stepsize, stepsize / 1.5)).eval()
elif kl < desired_kl / 2:
logger.log("kl too low")
U.eval(tf.assign(stepsize, tf.minimum(max_stepsize, stepsize * 1.5)))
tf.assign(stepsize, tf.minimum(max_stepsize, stepsize * 1.5)).eval()
else:
logger.log("kl just right!")

View File

@@ -7,16 +7,17 @@ from baselines import logger
from baselines.common import set_global_seeds, explained_variance
from baselines.acktr.utils import discount_with_dones
from baselines.acktr.utils import Scheduler, find_trainable_variables
from baselines.acktr.utils import cat_entropy, mse
from baselines.a2c.a2c import Runner
from baselines.a2c.utils import discount_with_dones
from baselines.a2c.utils import Scheduler, find_trainable_variables
from baselines.a2c.utils import cat_entropy, mse
from baselines.acktr import kfac
class Model(object):
def __init__(self, policy, ob_space, ac_space, nenvs,total_timesteps, nprocs=32, nsteps=20,
nstack=4, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
kfac_clip=0.001, lrschedule='linear'):
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=nprocs,
@@ -31,8 +32,8 @@ class Model(object):
PG_LR = tf.placeholder(tf.float32, [])
VF_LR = tf.placeholder(tf.float32, [])
self.model = step_model = policy(sess, ob_space, ac_space, nenvs, 1, nstack, reuse=False)
self.model2 = train_model = policy(sess, ob_space, ac_space, nenvs, nsteps, nstack, reuse=True)
self.model = step_model = policy(sess, ob_space, ac_space, nenvs, 1, reuse=False)
self.model2 = train_model = policy(sess, ob_space, ac_space, nenvs*nsteps, nsteps, reuse=True)
logpac = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=train_model.pi, labels=A)
self.logits = logits = train_model.pi
@@ -71,7 +72,7 @@ class Model(object):
cur_lr = self.lr.value()
td_map = {train_model.X:obs, A:actions, ADV:advs, R:rewards, PG_LR:cur_lr}
if states != []:
if states is not None:
td_map[train_model.S] = states
td_map[train_model.M] = masks
@@ -104,70 +105,8 @@ class Model(object):
self.initial_state = step_model.initial_state
tf.global_variables_initializer().run(session=sess)
class Runner(object):
def __init__(self, env, model, nsteps, nstack, gamma):
self.env = env
self.model = model
nh, nw, nc = env.observation_space.shape
nenv = env.num_envs
self.batch_ob_shape = (nenv*nsteps, nh, nw, nc*nstack)
self.obs = np.zeros((nenv, nh, nw, nc*nstack), dtype=np.uint8)
obs = env.reset()
self.update_obs(obs)
self.gamma = gamma
self.nsteps = nsteps
self.states = model.initial_state
self.dones = [False for _ in range(nenv)]
def update_obs(self, obs):
self.obs = np.roll(self.obs, shift=-1, axis=3)
self.obs[:, :, :, -1] = obs[:, :, :, 0]
def run(self):
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [],[],[],[],[]
mb_states = self.states
for n in range(self.nsteps):
actions, values, states = self.model.step(self.obs, self.states, self.dones)
mb_obs.append(np.copy(self.obs))
mb_actions.append(actions)
mb_values.append(values)
mb_dones.append(self.dones)
obs, rewards, dones, _ = self.env.step(actions)
self.states = states
self.dones = dones
for n, done in enumerate(dones):
if done:
self.obs[n] = self.obs[n]*0
self.update_obs(obs)
mb_rewards.append(rewards)
mb_dones.append(self.dones)
#batch of steps to batch of rollouts
mb_obs = np.asarray(mb_obs, dtype=np.uint8).swapaxes(1, 0).reshape(self.batch_ob_shape)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0)
mb_actions = np.asarray(mb_actions, dtype=np.int32).swapaxes(1, 0)
mb_values = np.asarray(mb_values, dtype=np.float32).swapaxes(1, 0)
mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0)
mb_masks = mb_dones[:, :-1]
mb_dones = mb_dones[:, 1:]
last_values = self.model.value(self.obs, self.states, self.dones).tolist()
#discount/bootstrap off value fn
for n, (rewards, dones, value) in enumerate(zip(mb_rewards, mb_dones, last_values)):
rewards = rewards.tolist()
dones = dones.tolist()
if dones[-1] == 0:
rewards = discount_with_dones(rewards+[value], dones+[0], self.gamma)[:-1]
else:
rewards = discount_with_dones(rewards, dones, self.gamma)
mb_rewards[n] = rewards
mb_rewards = mb_rewards.flatten()
mb_actions = mb_actions.flatten()
mb_values = mb_values.flatten()
mb_masks = mb_masks.flatten()
return mb_obs, mb_states, mb_rewards, mb_masks, mb_actions, mb_values
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20,
nstack=4, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5,
kfac_clip=0.001, save_interval=None, lrschedule='linear'):
tf.reset_default_graph()
set_global_seeds(seed)
@@ -176,7 +115,7 @@ def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval
ob_space = env.observation_space
ac_space = env.action_space
make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps
=nsteps, nstack=nstack, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef=
=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef=
vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip,
lrschedule=lrschedule)
if save_interval and logger.get_dir():
@@ -185,7 +124,7 @@ def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval
fh.write(cloudpickle.dumps(make_model))
model = make_model()
runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma)
runner = Runner(env, model, nsteps=nsteps, gamma=gamma)
nbatch = nenvs*nsteps
tstart = time.time()
coord = tf.train.Coordinator()

View File

@@ -228,7 +228,7 @@ class KfacOptimizer():
Ow = bpropFactor.get_shape()[2]
if Oh == 1 and Ow == 1 and self._channel_fac:
# factorization along the channels
# assume independence bewteen input channels and spatial
# assume independence between input channels and spatial
# 2K-1 x 2K-1 covariance matrix and C x C covariance matrix
# factorization along the channels do not
# support homogeneous coordinate, assnBias

View File

@@ -1,93 +1,55 @@
import tensorflow as tf
import numpy as np
def gmatmul(a, b, transpose_a=False, transpose_b=False, reduce_dim=None):
if reduce_dim == None:
# general batch matmul
if len(a.get_shape()) == 3 and len(b.get_shape()) == 3:
return tf.batch_matmul(a, b, adj_x=transpose_a, adj_y=transpose_b)
elif len(a.get_shape()) == 3 and len(b.get_shape()) == 2:
if transpose_b:
N = b.get_shape()[0].value
else:
N = b.get_shape()[1].value
B = a.get_shape()[0].value
if transpose_a:
K = a.get_shape()[1].value
a = tf.reshape(tf.transpose(a, [0, 2, 1]), [-1, K])
else:
K = a.get_shape()[-1].value
a = tf.reshape(a, [-1, K])
result = tf.matmul(a, b, transpose_b=transpose_b)
result = tf.reshape(result, [B, -1, N])
return result
elif len(a.get_shape()) == 2 and len(b.get_shape()) == 3:
if transpose_a:
M = a.get_shape()[1].value
else:
M = a.get_shape()[0].value
B = b.get_shape()[0].value
if transpose_b:
K = b.get_shape()[-1].value
b = tf.transpose(tf.reshape(b, [-1, K]), [1, 0])
else:
K = b.get_shape()[1].value
b = tf.transpose(tf.reshape(
tf.transpose(b, [0, 2, 1]), [-1, K]), [1, 0])
result = tf.matmul(a, b, transpose_a=transpose_a)
result = tf.transpose(tf.reshape(result, [M, B, -1]), [1, 0, 2])
return result
else:
return tf.matmul(a, b, transpose_a=transpose_a, transpose_b=transpose_b)
else:
# weird batch matmul
if len(a.get_shape()) == 2 and len(b.get_shape()) > 2:
# reshape reduce_dim to the left most dim in b
b_shape = b.get_shape()
if reduce_dim != 0:
b_dims = list(range(len(b_shape)))
b_dims.remove(reduce_dim)
b_dims.insert(0, reduce_dim)
b = tf.transpose(b, b_dims)
b_t_shape = b.get_shape()
b = tf.reshape(b, [int(b_shape[reduce_dim]), -1])
result = tf.matmul(a, b, transpose_a=transpose_a,
transpose_b=transpose_b)
result = tf.reshape(result, b_t_shape)
if reduce_dim != 0:
b_dims = list(range(len(b_shape)))
b_dims.remove(0)
b_dims.insert(reduce_dim, 0)
result = tf.transpose(result, b_dims)
return result
assert reduce_dim is not None
elif len(a.get_shape()) > 2 and len(b.get_shape()) == 2:
# reshape reduce_dim to the right most dim in a
a_shape = a.get_shape()
outter_dim = len(a_shape) - 1
reduce_dim = len(a_shape) - reduce_dim - 1
if reduce_dim != outter_dim:
a_dims = list(range(len(a_shape)))
a_dims.remove(reduce_dim)
a_dims.insert(outter_dim, reduce_dim)
a = tf.transpose(a, a_dims)
a_t_shape = a.get_shape()
a = tf.reshape(a, [-1, int(a_shape[reduce_dim])])
result = tf.matmul(a, b, transpose_a=transpose_a,
transpose_b=transpose_b)
result = tf.reshape(result, a_t_shape)
if reduce_dim != outter_dim:
a_dims = list(range(len(a_shape)))
a_dims.remove(outter_dim)
a_dims.insert(reduce_dim, outter_dim)
result = tf.transpose(result, a_dims)
return result
# weird batch matmul
if len(a.get_shape()) == 2 and len(b.get_shape()) > 2:
# reshape reduce_dim to the left most dim in b
b_shape = b.get_shape()
if reduce_dim != 0:
b_dims = list(range(len(b_shape)))
b_dims.remove(reduce_dim)
b_dims.insert(0, reduce_dim)
b = tf.transpose(b, b_dims)
b_t_shape = b.get_shape()
b = tf.reshape(b, [int(b_shape[reduce_dim]), -1])
result = tf.matmul(a, b, transpose_a=transpose_a,
transpose_b=transpose_b)
result = tf.reshape(result, b_t_shape)
if reduce_dim != 0:
b_dims = list(range(len(b_shape)))
b_dims.remove(0)
b_dims.insert(reduce_dim, 0)
result = tf.transpose(result, b_dims)
return result
elif len(a.get_shape()) == 2 and len(b.get_shape()) == 2:
return tf.matmul(a, b, transpose_a=transpose_a, transpose_b=transpose_b)
elif len(a.get_shape()) > 2 and len(b.get_shape()) == 2:
# reshape reduce_dim to the right most dim in a
a_shape = a.get_shape()
outter_dim = len(a_shape) - 1
reduce_dim = len(a_shape) - reduce_dim - 1
if reduce_dim != outter_dim:
a_dims = list(range(len(a_shape)))
a_dims.remove(reduce_dim)
a_dims.insert(outter_dim, reduce_dim)
a = tf.transpose(a, a_dims)
a_t_shape = a.get_shape()
a = tf.reshape(a, [-1, int(a_shape[reduce_dim])])
result = tf.matmul(a, b, transpose_a=transpose_a,
transpose_b=transpose_b)
result = tf.reshape(result, a_t_shape)
if reduce_dim != outter_dim:
a_dims = list(range(len(a_shape)))
a_dims.remove(outter_dim)
a_dims.insert(reduce_dim, outter_dim)
result = tf.transpose(result, a_dims)
return result
assert False, 'something went wrong'
elif len(a.get_shape()) == 2 and len(b.get_shape()) == 2:
return tf.matmul(a, b, transpose_a=transpose_a, transpose_b=transpose_b)
assert False, 'something went wrong'
def clipoutNeg(vec, threshold=1e-6):

View File

@@ -1,43 +1,8 @@
import numpy as np
import tensorflow as tf
from baselines.acktr.utils import conv, fc, dense, conv_to_fc, sample, kl_div
from baselines.acktr.utils import dense, kl_div
import baselines.common.tf_util as U
class CnnPolicy(object):
def __init__(self, sess, ob_space, ac_space, nenv, nsteps, nstack, reuse=False):
nbatch = nenv*nsteps
nh, nw, nc = ob_space.shape
ob_shape = (nbatch, nh, nw, nc*nstack)
nact = ac_space.n
X = tf.placeholder(tf.uint8, ob_shape) #obs
with tf.variable_scope("model", reuse=reuse):
h = conv(tf.cast(X, tf.float32)/255., 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2))
h2 = conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2))
h3 = conv(h2, 'c3', nf=32, rf=3, stride=1, init_scale=np.sqrt(2))
h3 = conv_to_fc(h3)
h4 = fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))
pi = fc(h4, 'pi', nact, act=lambda x:x)
vf = fc(h4, 'v', 1, act=lambda x:x)
v0 = vf[:, 0]
a0 = sample(pi)
self.initial_state = [] #not stateful
def step(ob, *_args, **_kwargs):
a, v = sess.run([a0, v0], {X:ob})
return a, v, [] #dummy state
def value(ob, *_args, **_kwargs):
return sess.run(v0, {X:ob})
self.X = X
self.pi = pi
self.vf = vf
self.step = step
self.value = value
class GaussianMlpPolicy(object):
def __init__(self, ob_dim, ac_dim):
# Here we'll construct a bunch of expressions, which will be used in two places:
@@ -60,12 +25,12 @@ class GaussianMlpPolicy(object):
std_na = tf.tile(std_1a, [tf.shape(mean_na)[0], 1])
ac_dist = tf.concat([tf.reshape(mean_na, [-1, ac_dim]), tf.reshape(std_na, [-1, ac_dim])], 1)
sampled_ac_na = tf.random_normal(tf.shape(ac_dist[:,ac_dim:])) * ac_dist[:,ac_dim:] + ac_dist[:,:ac_dim] # This is the sampled action we'll perform.
logprobsampled_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
logprob_n = - U.sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * U.sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
kl = U.mean(kl_div(oldac_dist, ac_dist, ac_dim))
#kl = .5 * U.mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
surr = - U.mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
surr_sampled = - U.mean(logprob_n) # Sampled loss of the policy
logprobsampled_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - sampled_ac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of sampled action
logprob_n = - tf.reduce_sum(tf.log(ac_dist[:,ac_dim:]), axis=1) - 0.5 * tf.log(2.0*np.pi)*ac_dim - 0.5 * tf.reduce_sum(tf.square(ac_dist[:,:ac_dim] - oldac_na) / (tf.square(ac_dist[:,ac_dim:])), axis=1) # Logprob of previous actions under CURRENT policy (whereas oldlogprob_n is under OLD policy)
kl = tf.reduce_mean(kl_div(oldac_dist, ac_dist, ac_dim))
#kl = .5 * tf.reduce_mean(tf.square(logprob_n - oldlogprob_n)) # Approximation of KL divergence between old policy used to generate actions, and new policy used to compute logprob_n
surr = - tf.reduce_mean(adv_n * logprob_n) # Loss function that we'll differentiate to get the policy gradient
surr_sampled = - tf.reduce_mean(logprob_n) # Sampled loss of the policy
self._act = U.function([ob_no], [sampled_ac_na, ac_dist, logprobsampled_n]) # Generate a new action and its logprob
#self.compute_kl = U.function([ob_no, oldac_na, oldlogprob_n], kl) # Compute (approximate) KL divergence between old policy and new policy
self.compute_kl = U.function([ob_no, oldac_dist], kl)

View File

@@ -1,38 +1,23 @@
#!/usr/bin/env python
import os, logging, gym
#!/usr/bin/env python3
from functools import partial
from baselines import logger
from baselines.common import set_global_seeds
from baselines import bench
from baselines.acktr.acktr_disc import learn
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
from baselines.acktr.policies import CnnPolicy
from baselines.common.cmd_util import make_atari_env, atari_arg_parser
from baselines.common.vec_env.vec_frame_stack import VecFrameStack
from baselines.ppo2.policies import CnnPolicy
def train(env_id, num_timesteps, seed, num_cpu):
def make_env(rank):
def _thunk():
env = make_atari(env_id)
env.seed(seed + rank)
env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
gym.logger.setLevel(logging.WARN)
return wrap_deepmind(env)
return _thunk
set_global_seeds(seed)
env = SubprocVecEnv([make_env(i) for i in range(num_cpu)])
policy_fn = CnnPolicy
env = VecFrameStack(make_atari_env(env_id, num_cpu, seed), 4)
policy_fn = partial(CnnPolicy, one_dim_bias=True)
learn(policy_fn, env, seed, total_timesteps=int(num_timesteps * 1.1), nprocs=num_cpu)
env.close()
def main():
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--env', help='environment ID', default='BreakoutNoFrameskip-v4')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--num-timesteps', type=int, default=int(10e6))
args = parser.parse_args()
args = atari_arg_parser().parse_args()
logger.configure()
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed, num_cpu=32)
if __name__ == '__main__':
main()

View File

@@ -1,22 +1,14 @@
#!/usr/bin/env python
import argparse
import logging
import os
#!/usr/bin/env python3
import tensorflow as tf
import gym
from baselines import logger
from baselines.common import set_global_seeds
from baselines import bench
from baselines.common.cmd_util import make_mujoco_env, mujoco_arg_parser
from baselines.acktr.acktr_cont import learn
from baselines.acktr.policies import GaussianMlpPolicy
from baselines.acktr.value_functions import NeuralNetValueFunction
def train(env_id, num_timesteps, seed):
env=gym.make(env_id)
env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
set_global_seeds(seed)
env.seed(seed)
gym.logger.setLevel(logging.WARN)
env = make_mujoco_env(env_id, seed)
with tf.Session(config=tf.ConfigProto()):
ob_dim = env.observation_space.shape[0]
@@ -33,11 +25,10 @@ def train(env_id, num_timesteps, seed):
env.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run Mujoco benchmark.')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--env', help='environment ID', type=str, default="Reacher-v1")
parser.add_argument('--num-timesteps', type=int, default=int(1e6))
args = parser.parse_args()
def main():
args = mujoco_arg_parser().parse_args()
logger.configure()
train(args.env, num_timesteps=args.num_timesteps, seed=args.seed)
if __name__ == "__main__":
main()

View File

@@ -1,69 +1,8 @@
import os
import numpy as np
import tensorflow as tf
import baselines.common.tf_util as U
from collections import deque
def sample(logits):
noise = tf.random_uniform(tf.shape(logits))
return tf.argmax(logits - tf.log(-tf.log(noise)), 1)
def std(x):
mean = tf.reduce_mean(x)
var = tf.reduce_mean(tf.square(x-mean))
return tf.sqrt(var)
def cat_entropy(logits):
a0 = logits - tf.reduce_max(logits, 1, keep_dims=True)
ea0 = tf.exp(a0)
z0 = tf.reduce_sum(ea0, 1, keep_dims=True)
p0 = ea0 / z0
return tf.reduce_sum(p0 * (tf.log(z0) - a0), 1)
def cat_entropy_softmax(p0):
return - tf.reduce_sum(p0 * tf.log(p0 + 1e-6), axis = 1)
def mse(pred, target):
return tf.square(pred-target)/2.
def ortho_init(scale=1.0):
def _ortho_init(shape, dtype, partition_info=None):
#lasagne ortho init for tf
shape = tuple(shape)
if len(shape) == 2:
flat_shape = shape
elif len(shape) == 4: # assumes NHWC
flat_shape = (np.prod(shape[:-1]), shape[-1])
else:
raise NotImplementedError
a = np.random.normal(0.0, 1.0, flat_shape)
u, _, v = np.linalg.svd(a, full_matrices=False)
q = u if u.shape == flat_shape else v # pick the one with the correct shape
q = q.reshape(shape)
return (scale * q[:shape[0], :shape[1]]).astype(np.float32)
return _ortho_init
def conv(x, scope, nf, rf, stride, pad='VALID', act=tf.nn.relu, init_scale=1.0):
with tf.variable_scope(scope):
nin = x.get_shape()[3].value
w = tf.get_variable("w", [rf, rf, nin, nf], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nf], initializer=tf.constant_initializer(0.0))
z = tf.nn.conv2d(x, w, strides=[1, stride, stride, 1], padding=pad)+b
h = act(z)
return h
def fc(x, scope, nh, act=tf.nn.relu, init_scale=1.0):
with tf.variable_scope(scope):
nin = x.get_shape()[1].value
w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale))
b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(0.0))
z = tf.matmul(x, w)+b
h = act(z)
return h
def dense(x, size, name, weight_init=None, bias_init=0, weight_loss_dict=None, reuse=None):
with tf.variable_scope(name, reuse=reuse):
assert (len(U.scope_name().split('/')) == 2)
assert (len(tf.get_variable_scope().name.split('/')) == 2)
w = tf.get_variable("w", [x.get_shape()[1], size], initializer=weight_init)
b = tf.get_variable("b", [size], initializer=tf.constant_initializer(bias_init))
@@ -75,15 +14,10 @@ def dense(x, size, name, weight_init=None, bias_init=0, weight_loss_dict=None, r
weight_loss_dict[w] = weight_decay_fc
weight_loss_dict[b] = 0.0
tf.add_to_collection(U.scope_name().split('/')[0] + '_' + 'losses', weight_decay)
tf.add_to_collection(tf.get_variable_scope().name.split('/')[0] + '_' + 'losses', weight_decay)
return tf.nn.bias_add(tf.matmul(x, w), b)
def conv_to_fc(x):
nh = np.prod([v.value for v in x.get_shape()[1:]])
x = tf.reshape(x, [-1, nh])
return x
def kl_div(action_dist1, action_dist2, action_size):
mean1, std1 = action_dist1[:, :action_size], action_dist1[:, action_size:]
mean2, std2 = action_dist2[:, :action_size], action_dist2[:, action_size:]
@@ -92,109 +26,3 @@ def kl_div(action_dist1, action_dist2, action_size):
denominator = 2 * tf.square(std2) + 1e-8
return tf.reduce_sum(
numerator/denominator + tf.log(std2) - tf.log(std1),reduction_indices=-1)
def discount_with_dones(rewards, dones, gamma):
discounted = []
r = 0
for reward, done in zip(rewards[::-1], dones[::-1]):
r = reward + gamma*r*(1.-done) # fixed off by one bug
discounted.append(r)
return discounted[::-1]
def find_trainable_variables(key):
with tf.variable_scope(key):
return tf.trainable_variables()
def make_path(f):
return os.makedirs(f, exist_ok=True)
def constant(p):
return 1
def linear(p):
return 1-p
def middle_drop(p):
eps = 0.75
if 1-p<eps:
return eps*0.1
return 1-p
def double_linear_con(p):
p *= 2
eps = 0.125
if 1-p<eps:
return eps
return 1-p
def double_middle_drop(p):
eps1 = 0.75
eps2 = 0.25
if 1-p<eps1:
if 1-p<eps2:
return eps2*0.5
return eps1*0.1
return 1-p
schedules = {
'linear':linear,
'constant':constant,
'double_linear_con':double_linear_con,
'middle_drop':middle_drop,
'double_middle_drop':double_middle_drop
}
class Scheduler(object):
def __init__(self, v, nvalues, schedule):
self.n = 0.
self.v = v
self.nvalues = nvalues
self.schedule = schedules[schedule]
def value(self):
current_value = self.v*self.schedule(self.n/self.nvalues)
self.n += 1.
return current_value
def value_steps(self, steps):
return self.v*self.schedule(steps/self.nvalues)
class EpisodeStats:
def __init__(self, nsteps, nenvs):
self.episode_rewards = []
for i in range(nenvs):
self.episode_rewards.append([])
self.lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
self.rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards
self.nsteps = nsteps
self.nenvs = nenvs
def feed(self, rewards, masks):
rewards = np.reshape(rewards, [self.nenvs, self.nsteps])
masks = np.reshape(masks, [self.nenvs, self.nsteps])
for i in range(0, self.nenvs):
for j in range(0, self.nsteps):
self.episode_rewards[i].append(rewards[i][j])
if masks[i][j]:
l = len(self.episode_rewards[i])
s = sum(self.episode_rewards[i])
self.lenbuffer.append(l)
self.rewbuffer.append(s)
self.episode_rewards[i] = []
def mean_length(self):
if self.lenbuffer:
return np.mean(self.lenbuffer)
else:
return 0 # on the first params dump, no episodes are finished
def mean_reward(self):
if self.rewbuffer:
return np.mean(self.rewbuffer)
else:
return 0

View File

@@ -1,6 +1,6 @@
from baselines import logger
import numpy as np
from baselines import common
import baselines.common as common
from baselines.common import tf_util as U
import tensorflow as tf
from baselines.acktr import kfac
@@ -16,8 +16,8 @@ class NeuralNetValueFunction(object):
vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
wd_loss = tf.get_collection("vf_losses", None)
loss = U.mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
loss_sampled = U.mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
self._predict = U.function([X], vpred_n)
optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \

View File

@@ -1,3 +1,2 @@
from baselines.bench.benchmarks import *
from baselines.bench.monitor import *
from baselines.bench.simple_bench import simple_bench
from baselines.bench.monitor import *

View File

@@ -1,15 +1,26 @@
import re
import os.path as osp
import os
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
_atari7 = ['BeamRider', 'Breakout', 'Enduro', 'Pong', 'Qbert', 'Seaquest', 'SpaceInvaders']
_atariexpl7 = ['Freeway', 'Gravitar', 'MontezumaRevenge', 'Pitfall', 'PrivateEye', 'Solaris', 'Venture']
_BENCHMARKS = []
remove_version_re = re.compile(r'-v\d+$')
def register_benchmark(benchmark):
for b in _BENCHMARKS:
if b['name'] == benchmark['name']:
raise ValueError('Benchmark with name %s already registered!' % b['name'])
# automatically add a description if it is not present
if 'tasks' in benchmark:
for t in benchmark['tasks']:
if 'desc' not in t:
t['desc'] = remove_version_re.sub('', t['env_id'])
_BENCHMARKS.append(benchmark)
@@ -42,36 +53,34 @@ _ATARI_SUFFIX = 'NoFrameskip-v4'
register_benchmark({
'name': 'Atari50M',
'description': '7 Atari games from Mnih et al. (2013), with pixel observations, 50M timesteps',
'tasks': [{'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(50e6)} for _game in _atari7]
'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(50e6)} for _game in _atari7]
})
register_benchmark({
'name': 'Atari10M',
'description': '7 Atari games from Mnih et al. (2013), with pixel observations, 10M timesteps',
'tasks': [{'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(10e6)} for _game in _atari7]
'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(10e6)} for _game in _atari7]
})
register_benchmark({
'name': 'Atari1Hr',
'description': '7 Atari games from Mnih et al. (2013), with pixel observations, 1 hour of walltime',
'tasks': [{'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_seconds': 60 * 60} for _game in _atari7]
'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_seconds': 60 * 60} for _game in _atari7]
})
register_benchmark({
'name': 'AtariExploration10M',
'description': '7 Atari games emphasizing exploration, with pixel observations, 10M timesteps',
'tasks': [{'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(10e6)} for _game in _atariexpl7]
'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(10e6)} for _game in _atariexpl7]
})
# MuJoCo
_mujocosmall = [
'InvertedDoublePendulum-v1', 'InvertedPendulum-v1',
'HalfCheetah-v1', 'Hopper-v1', 'Walker2d-v1',
'Reacher-v1', 'Swimmer-v1']
'InvertedDoublePendulum-v2', 'InvertedPendulum-v2',
'HalfCheetah-v2', 'Hopper-v2', 'Walker2d-v2',
'Reacher-v2', 'Swimmer-v2']
register_benchmark({
'name': 'Mujoco1M',
'description': 'Some small 2D MuJoCo tasks, run for 1M timesteps',
@@ -128,5 +137,14 @@ _atari50 = [ # actually 47
register_benchmark({
'name': 'Atari50_10M',
'description': '47 Atari games from Mnih et al. (2013), with pixel observations, 10M timesteps',
'tasks': [{'env_id': _game + _ATARI_SUFFIX, 'trials': 3, 'num_timesteps': int(10e6)} for _game in _atari50]
'tasks': [{'desc': _game, 'env_id': _game + _ATARI_SUFFIX, 'trials': 2, 'num_timesteps': int(10e6)} for _game in _atari50]
})
# HER DDPG
register_benchmark({
'name': 'HerDdpg',
'description': 'Smoke-test only benchmark of HER',
'tasks': [{'trials': 1, 'env_id': 'FetchReach-v1'}]
})

View File

@@ -7,12 +7,13 @@ from glob import glob
import csv
import os.path as osp
import json
import numpy as np
class Monitor(Wrapper):
EXT = "monitor.csv"
f = None
def __init__(self, env, filename, allow_early_resets=False, reset_keywords=()):
def __init__(self, env, filename, allow_early_resets=False, reset_keywords=(), info_keywords=()):
Wrapper.__init__(self, env=env)
self.tstart = time.time()
if filename is None:
@@ -25,21 +26,23 @@ class Monitor(Wrapper):
else:
filename = filename + "." + Monitor.EXT
self.f = open(filename, "wt")
self.f.write('#%s\n'%json.dumps({"t_start": self.tstart, "gym_version": gym.__version__,
"env_id": env.spec.id if env.spec else 'Unknown'}))
self.logger = csv.DictWriter(self.f, fieldnames=('r', 'l', 't')+reset_keywords)
self.f.write('#%s\n'%json.dumps({"t_start": self.tstart, 'env_id' : env.spec and env.spec.id}))
self.logger = csv.DictWriter(self.f, fieldnames=('r', 'l', 't')+reset_keywords+info_keywords)
self.logger.writeheader()
self.f.flush()
self.reset_keywords = reset_keywords
self.info_keywords = info_keywords
self.allow_early_resets = allow_early_resets
self.rewards = None
self.needs_reset = True
self.episode_rewards = []
self.episode_lengths = []
self.episode_times = []
self.total_steps = 0
self.current_reset_info = {} # extra info about the current episode, that was passed in during reset()
def _reset(self, **kwargs):
def reset(self, **kwargs):
if not self.allow_early_resets and not self.needs_reset:
raise RuntimeError("Tried to reset an environment before done. If you want to allow early resets, wrap your env with Monitor(env, path, allow_early_resets=True)")
self.rewards = []
@@ -51,7 +54,7 @@ class Monitor(Wrapper):
self.current_reset_info[k] = v
return self.env.reset(**kwargs)
def _step(self, action):
def step(self, action):
if self.needs_reset:
raise RuntimeError("Tried to step environment that needs reset")
ob, rew, done, info = self.env.step(action)
@@ -61,12 +64,15 @@ class Monitor(Wrapper):
eprew = sum(self.rewards)
eplen = len(self.rewards)
epinfo = {"r": round(eprew, 6), "l": eplen, "t": round(time.time() - self.tstart, 6)}
for k in self.info_keywords:
epinfo[k] = info[k]
self.episode_rewards.append(eprew)
self.episode_lengths.append(eplen)
self.episode_times.append(time.time() - self.tstart)
epinfo.update(self.current_reset_info)
if self.logger:
self.logger.writerow(epinfo)
self.f.flush()
self.episode_rewards.append(eprew)
self.episode_lengths.append(eplen)
info['episode'] = epinfo
self.total_steps += 1
return (ob, rew, done, info)
@@ -84,6 +90,9 @@ class Monitor(Wrapper):
def get_episode_lengths(self):
return self.episode_lengths
def get_episode_times(self):
return self.episode_times
class LoadMonitorResultsError(Exception):
pass
@@ -92,7 +101,9 @@ def get_monitor_files(dir):
def load_results(dir):
import pandas
monitor_files = glob(osp.join(dir, "*monitor.*")) # get both csv and (old) json files
monitor_files = (
glob(osp.join(dir, "*monitor.json")) +
glob(osp.join(dir, "*monitor.csv"))) # get both csv and (old) json files
if not monitor_files:
raise LoadMonitorResultsError("no monitor files of the form *%s found in %s" % (Monitor.EXT, dir))
dfs = []
@@ -114,10 +125,37 @@ def load_results(dir):
episode = json.loads(line)
episodes.append(episode)
df = pandas.DataFrame(episodes)
df['t'] += header['t_start']
else:
assert 0, 'unreachable'
df['t'] += header['t_start']
dfs.append(df)
df = pandas.concat(dfs)
df.sort_values('t', inplace=True)
df.reset_index(inplace=True)
df['t'] -= min(header['t_start'] for header in headers)
df.headers = headers # HACK to preserve backwards compatibility
return df
return df
def test_monitor():
env = gym.make("CartPole-v1")
env.seed(0)
mon_file = "/tmp/baselines-test-%s.monitor.csv" % uuid.uuid4()
menv = Monitor(env, mon_file)
menv.reset()
for _ in range(1000):
_, _, done, _ = menv.step(0)
if done:
menv.reset()
f = open(mon_file, 'rt')
firstline = f.readline()
assert firstline.startswith('#')
metadata = json.loads(firstline[1:])
assert metadata['env_id'] == "CartPole-v1"
assert set(metadata.keys()) == {'env_id', 'gym_version', 't_start'}, "Incorrect keys in monitor metadata"
last_logline = pandas.read_csv(f, index_col=None)
assert set(last_logline.keys()) == {'l', 't', 'r'}, "Incorrect keys in monitor logline"
f.close()
os.remove(mon_file)

View File

@@ -1,3 +1,4 @@
# flake8: noqa F403
from baselines.common.console_util import *
from baselines.common.dataset import Dataset
from baselines.common.math_util import *

View File

@@ -3,6 +3,7 @@ from collections import deque
import gym
from gym import spaces
import cv2
cv2.ocl.setUseOpenCL(False)
class NoopResetEnv(gym.Wrapper):
def __init__(self, env, noop_max=30):
@@ -12,14 +13,10 @@ class NoopResetEnv(gym.Wrapper):
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
if isinstance(env.action_space, gym.spaces.MultiBinary):
self.noop_action = np.zeros(self.env.action_space.n, dtype=np.int64)
else:
# used for atari environments
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
def _reset(self, **kwargs):
def reset(self, **kwargs):
""" Do no-op action for a number of steps in [1, noop_max]."""
self.env.reset(**kwargs)
if self.override_num_noops is not None:
@@ -34,6 +31,9 @@ class NoopResetEnv(gym.Wrapper):
obs = self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
class FireResetEnv(gym.Wrapper):
def __init__(self, env):
"""Take action on reset for environments that are fixed until firing."""
@@ -41,7 +41,7 @@ class FireResetEnv(gym.Wrapper):
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
assert len(env.unwrapped.get_action_meanings()) >= 3
def _reset(self, **kwargs):
def reset(self, **kwargs):
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(1)
if done:
@@ -51,6 +51,9 @@ class FireResetEnv(gym.Wrapper):
self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
class EpisodicLifeEnv(gym.Wrapper):
def __init__(self, env):
"""Make end-of-life == end-of-episode, but only reset on true game over.
@@ -60,21 +63,21 @@ class EpisodicLifeEnv(gym.Wrapper):
self.lives = 0
self.was_real_done = True
def _step(self, action):
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
# check current lives, make loss of life terminal,
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives()
if lives < self.lives and lives > 0:
# for Qbert somtimes we stay in lives == 0 condtion for a few frames
# for Qbert sometimes we stay in lives == 0 condtion for a few frames
# so its important to keep lives > 0, so that we only reset once
# the environment advertises done.
done = True
self.lives = lives
return obs, reward, done, info
def _reset(self, **kwargs):
def reset(self, **kwargs):
"""Reset only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.
@@ -92,10 +95,10 @@ class MaxAndSkipEnv(gym.Wrapper):
"""Return only every `skip`-th frame"""
gym.Wrapper.__init__(self, env)
# most recent raw observations (for max pooling across time steps)
self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype='uint8')
self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8)
self._skip = skip
def _step(self, action):
def step(self, action):
"""Repeat action, sum reward, and max over last observations."""
total_reward = 0.0
done = None
@@ -112,8 +115,14 @@ class MaxAndSkipEnv(gym.Wrapper):
return max_frame, total_reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class ClipRewardEnv(gym.RewardWrapper):
def _reward(self, reward):
def __init__(self, env):
gym.RewardWrapper.__init__(self, env)
def reward(self, reward):
"""Bin reward to {+1, 0, -1} by its sign."""
return np.sign(reward)
@@ -123,9 +132,10 @@ class WarpFrame(gym.ObservationWrapper):
gym.ObservationWrapper.__init__(self, env)
self.width = 84
self.height = 84
self.observation_space = spaces.Box(low=0, high=255, shape=(self.height, self.width, 1))
self.observation_space = spaces.Box(low=0, high=255,
shape=(self.height, self.width, 1), dtype=np.uint8)
def _observation(self, frame):
def observation(self, frame):
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)
return frame[:, :, None]
@@ -144,15 +154,15 @@ class FrameStack(gym.Wrapper):
self.k = k
self.frames = deque([], maxlen=k)
shp = env.observation_space.shape
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k))
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=np.uint8)
def _reset(self):
def reset(self):
ob = self.env.reset()
for _ in range(self.k):
self.frames.append(ob)
return self._get_ob()
def _step(self, action):
def step(self, action):
ob, reward, done, info = self.env.step(action)
self.frames.append(ob)
return self._get_ob(), reward, done, info
@@ -162,7 +172,10 @@ class FrameStack(gym.Wrapper):
return LazyFrames(list(self.frames))
class ScaledFloatFrame(gym.ObservationWrapper):
def _observation(self, observation):
def __init__(self, env):
gym.ObservationWrapper.__init__(self, env)
def observation(self, observation):
# careful! This undoes the memory optimization, use
# with smaller replay buffers only.
return np.array(observation).astype(np.float32) / 255.0
@@ -175,15 +188,28 @@ class LazyFrames(object):
This object should only be converted to numpy array before being passed to the model.
You'd not belive how complex the previous solution was."""
You'd not believe how complex the previous solution was."""
self._frames = frames
self._out = None
def _force(self):
if self._out is None:
self._out = np.concatenate(self._frames, axis=2)
self._frames = None
return self._out
def __array__(self, dtype=None):
out = np.concatenate(self._frames, axis=2)
out = self._force()
if dtype is not None:
out = out.astype(dtype)
return out
def __len__(self):
return len(self._force())
def __getitem__(self, i):
return self._force()[i]
def make_atari(env_id):
env = gym.make(env_id)
assert 'NoFrameskip' in env.spec.id

View File

@@ -1,154 +0,0 @@
import os
import tempfile
import zipfile
from azure.common import AzureMissingResourceHttpError
try:
from azure.storage.blob import BlobService
except ImportError:
from azure.storage.blob import BlockBlobService as BlobService
from shutil import unpack_archive
from threading import Event
# TODOS: use Azure snapshots instead of hacky backups
def fixed_list_blobs(service, *args, **kwargs):
"""By defualt list_containers only returns a subset of results.
This function attempts to fix this.
"""
res = []
next_marker = None
while next_marker is None or len(next_marker) > 0:
kwargs['marker'] = next_marker
gen = service.list_blobs(*args, **kwargs)
for b in gen:
res.append(b.name)
next_marker = gen.next_marker
return res
def make_archive(source_path, dest_path):
if source_path.endswith(os.path.sep):
source_path = source_path.rstrip(os.path.sep)
prefix_path = os.path.dirname(source_path)
with zipfile.ZipFile(dest_path, "w", compression=zipfile.ZIP_STORED) as zf:
if os.path.isdir(source_path):
for dirname, _subdirs, files in os.walk(source_path):
zf.write(dirname, os.path.relpath(dirname, prefix_path))
for filename in files:
filepath = os.path.join(dirname, filename)
zf.write(filepath, os.path.relpath(filepath, prefix_path))
else:
zf.write(source_path, os.path.relpath(source_path, prefix_path))
class Container(object):
services = {}
def __init__(self, account_name, account_key, container_name, maybe_create=False):
self._account_name = account_name
self._container_name = container_name
if account_name not in Container.services:
Container.services[account_name] = BlobService(account_name, account_key)
self._service = Container.services[account_name]
if maybe_create:
self._service.create_container(self._container_name, fail_on_exist=False)
def put(self, source_path, blob_name, callback=None):
"""Upload a file or directory from `source_path` to azure blob `blob_name`.
Upload progress can be traced by an optional callback.
"""
upload_done = Event()
def progress_callback(current, total):
if callback:
callback(current, total)
if current >= total:
upload_done.set()
# Attempt to make backup if an existing version is already available
try:
x_ms_copy_source = "https://{}.blob.core.windows.net/{}/{}".format(
self._account_name,
self._container_name,
blob_name
)
self._service.copy_blob(
container_name=self._container_name,
blob_name=blob_name + ".backup",
x_ms_copy_source=x_ms_copy_source
)
except AzureMissingResourceHttpError:
pass
with tempfile.TemporaryDirectory() as td:
arcpath = os.path.join(td, "archive.zip")
make_archive(source_path, arcpath)
self._service.put_block_blob_from_path(
container_name=self._container_name,
blob_name=blob_name,
file_path=arcpath,
max_connections=4,
progress_callback=progress_callback,
max_retries=10)
upload_done.wait()
def get(self, dest_path, blob_name, callback=None):
"""Download a file or directory to `dest_path` to azure blob `blob_name`.
Warning! If directory is downloaded the `dest_path` is the parent directory.
Upload progress can be traced by an optional callback.
"""
download_done = Event()
def progress_callback(current, total):
if callback:
callback(current, total)
if current >= total:
download_done.set()
with tempfile.TemporaryDirectory() as td:
arcpath = os.path.join(td, "archive.zip")
for backup_blob_name in [blob_name, blob_name + '.backup']:
try:
properties = self._service.get_blob_properties(
blob_name=backup_blob_name,
container_name=self._container_name
)
if hasattr(properties, 'properties'):
# Annoyingly, Azure has changed the API and this now returns a blob
# instead of it's properties with up-to-date azure package.
blob_size = properties.properties.content_length
else:
blob_size = properties['content-length']
if int(blob_size) > 0:
self._service.get_blob_to_path(
container_name=self._container_name,
blob_name=backup_blob_name,
file_path=arcpath,
max_connections=4,
progress_callback=progress_callback)
unpack_archive(arcpath, dest_path)
download_done.wait()
return True
except AzureMissingResourceHttpError:
pass
return False
def list(self, prefix=None):
"""List all blobs in the container."""
return fixed_list_blobs(self._service, self._container_name, prefix=prefix)
def exists(self, blob_name):
"""Returns true if `blob_name` exists in container."""
try:
self._service.get_blob_properties(
blob_name=blob_name,
container_name=self._container_name
)
return True
except AzureMissingResourceHttpError:
return False

View File

@@ -0,0 +1,90 @@
"""
Helpers for scripts like run_atari.py.
"""
import os
from mpi4py import MPI
import gym
from gym.wrappers import FlattenDictWrapper
from baselines import logger
from baselines.bench import Monitor
from baselines.common import set_global_seeds
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
def make_atari_env(env_id, num_env, seed, wrapper_kwargs=None, start_index=0):
"""
Create a wrapped, monitored SubprocVecEnv for Atari.
"""
if wrapper_kwargs is None: wrapper_kwargs = {}
def make_env(rank): # pylint: disable=C0111
def _thunk():
env = make_atari(env_id)
env.seed(seed + rank)
env = Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
return wrap_deepmind(env, **wrapper_kwargs)
return _thunk
set_global_seeds(seed)
return SubprocVecEnv([make_env(i + start_index) for i in range(num_env)])
def make_mujoco_env(env_id, seed):
"""
Create a wrapped, monitored gym.Env for MuJoCo.
"""
rank = MPI.COMM_WORLD.Get_rank()
set_global_seeds(seed + 10000 * rank)
env = gym.make(env_id)
env = Monitor(env, os.path.join(logger.get_dir(), str(rank)))
env.seed(seed)
return env
def make_robotics_env(env_id, seed, rank=0):
"""
Create a wrapped, monitored gym.Env for MuJoCo.
"""
set_global_seeds(seed)
env = gym.make(env_id)
env = FlattenDictWrapper(env, ['observation', 'desired_goal'])
env = Monitor(
env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)),
info_keywords=('is_success',))
env.seed(seed)
return env
def arg_parser():
"""
Create an empty argparse.ArgumentParser.
"""
import argparse
return argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
def atari_arg_parser():
"""
Create an argparse.ArgumentParser for run_atari.py.
"""
parser = arg_parser()
parser.add_argument('--env', help='environment ID', default='BreakoutNoFrameskip-v4')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--num-timesteps', type=int, default=int(10e6))
return parser
def mujoco_arg_parser():
"""
Create an argparse.ArgumentParser for run_mujoco.py.
"""
parser = arg_parser()
parser.add_argument('--env', help='environment ID', type=str, default='Reacher-v2')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--num-timesteps', type=int, default=int(1e6))
parser.add_argument('--play', default=False, action='store_true')
return parser
def robotics_arg_parser():
"""
Create an argparse.ArgumentParser for run_mujoco.py.
"""
parser = arg_parser()
parser.add_argument('--env', help='environment ID', type=str, default='FetchReach-v0')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--num-timesteps', type=int, default=int(1e6))
return parser

View File

@@ -16,7 +16,12 @@ def fmt_item(x, l):
if isinstance(x, np.ndarray):
assert x.ndim==0
x = x.item()
if isinstance(x, float): rep = "%g"%x
if isinstance(x, (float, np.float32, np.float64)):
v = abs(x)
if (v < 1e-4 or v > 1e+4) and v > 0:
rep = "%7.2e" % x
else:
rep = "%7.5f" % x
else: rep = str(x)
return " "*(l - len(rep)) + rep

View File

@@ -1,6 +1,7 @@
import tensorflow as tf
import numpy as np
import baselines.common.tf_util as U
from baselines.a2c.utils import fc
from tensorflow.python.ops import math_ops
class Pd(object):
@@ -31,6 +32,8 @@ class PdType(object):
raise NotImplementedError
def pdfromflat(self, flat):
return self.pdclass()(flat)
def pdfromlatent(self, latent_vector):
raise NotImplementedError
def param_shape(self):
raise NotImplementedError
def sample_shape(self):
@@ -48,6 +51,10 @@ class CategoricalPdType(PdType):
self.ncat = ncat
def pdclass(self):
return CategoricalPd
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
pdparam = fc(latent_vector, 'pi', self.ncat, init_scale=init_scale, init_bias=init_bias)
return self.pdfromflat(pdparam), pdparam
def param_shape(self):
return [self.ncat]
def sample_shape(self):
@@ -57,14 +64,12 @@ class CategoricalPdType(PdType):
class MultiCategoricalPdType(PdType):
def __init__(self, low, high):
self.low = low
self.high = high
self.ncats = high - low + 1
def __init__(self, nvec):
self.ncats = nvec
def pdclass(self):
return MultiCategoricalPd
def pdfromflat(self, flat):
return MultiCategoricalPd(self.low, self.high, flat)
return MultiCategoricalPd(self.ncats, flat)
def param_shape(self):
return [sum(self.ncats)]
def sample_shape(self):
@@ -77,6 +82,13 @@ class DiagGaussianPdType(PdType):
self.size = size
def pdclass(self):
return DiagGaussianPd
def pdfromlatent(self, latent_vector, init_scale=1.0, init_bias=0.0):
mean = fc(latent_vector, 'pi', self.size, init_scale=init_scale, init_bias=init_bias)
logstd = tf.get_variable(name='logstd', shape=[1, self.size], initializer=tf.zeros_initializer())
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
return self.pdfromflat(pdparam), mean
def param_shape(self):
return [2*self.size]
def sample_shape(self):
@@ -125,7 +137,7 @@ class CategoricalPd(Pd):
def flatparam(self):
return self.logits
def mode(self):
return U.argmax(self.logits, axis=-1)
return tf.argmax(self.logits, axis=-1)
def neglogp(self, x):
# return tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=x)
# Note: we can't use sparse_softmax_cross_entropy_with_logits because
@@ -135,20 +147,20 @@ class CategoricalPd(Pd):
logits=self.logits,
labels=one_hot_actions)
def kl(self, other):
a0 = self.logits - U.max(self.logits, axis=-1, keepdims=True)
a1 = other.logits - U.max(other.logits, axis=-1, keepdims=True)
a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keep_dims=True)
a1 = other.logits - tf.reduce_max(other.logits, axis=-1, keep_dims=True)
ea0 = tf.exp(a0)
ea1 = tf.exp(a1)
z0 = U.sum(ea0, axis=-1, keepdims=True)
z1 = U.sum(ea1, axis=-1, keepdims=True)
z0 = tf.reduce_sum(ea0, axis=-1, keep_dims=True)
z1 = tf.reduce_sum(ea1, axis=-1, keep_dims=True)
p0 = ea0 / z0
return U.sum(p0 * (a0 - tf.log(z0) - a1 + tf.log(z1)), axis=-1)
return tf.reduce_sum(p0 * (a0 - tf.log(z0) - a1 + tf.log(z1)), axis=-1)
def entropy(self):
a0 = self.logits - U.max(self.logits, axis=-1, keepdims=True)
a0 = self.logits - tf.reduce_max(self.logits, axis=-1, keep_dims=True)
ea0 = tf.exp(a0)
z0 = U.sum(ea0, axis=-1, keepdims=True)
z0 = tf.reduce_sum(ea0, axis=-1, keep_dims=True)
p0 = ea0 / z0
return U.sum(p0 * (tf.log(z0) - a0), axis=-1)
return tf.reduce_sum(p0 * (tf.log(z0) - a0), axis=-1)
def sample(self):
u = tf.random_uniform(tf.shape(self.logits))
return tf.argmax(self.logits - tf.log(-tf.log(u)), axis=-1)
@@ -157,24 +169,21 @@ class CategoricalPd(Pd):
return cls(flat)
class MultiCategoricalPd(Pd):
def __init__(self, low, high, flat):
def __init__(self, nvec, flat):
self.flat = flat
self.low = tf.constant(low, dtype=tf.int32)
self.categoricals = list(map(CategoricalPd, tf.split(flat, high - low + 1, axis=len(flat.get_shape()) - 1)))
self.categoricals = list(map(CategoricalPd, tf.split(flat, nvec, axis=-1)))
def flatparam(self):
return self.flat
def mode(self):
return self.low + tf.cast(tf.stack([p.mode() for p in self.categoricals], axis=-1), tf.int32)
return tf.cast(tf.stack([p.mode() for p in self.categoricals], axis=-1), tf.int32)
def neglogp(self, x):
return tf.add_n([p.neglogp(px) for p, px in zip(self.categoricals, tf.unstack(x - self.low, axis=len(x.get_shape()) - 1))])
return tf.add_n([p.neglogp(px) for p, px in zip(self.categoricals, tf.unstack(x, axis=-1))])
def kl(self, other):
return tf.add_n([
p.kl(q) for p, q in zip(self.categoricals, other.categoricals)
])
return tf.add_n([p.kl(q) for p, q in zip(self.categoricals, other.categoricals)])
def entropy(self):
return tf.add_n([p.entropy() for p in self.categoricals])
def sample(self):
return self.low + tf.cast(tf.stack([p.sample() for p in self.categoricals], axis=-1), tf.int32)
return tf.cast(tf.stack([p.sample() for p in self.categoricals], axis=-1), tf.int32)
@classmethod
def fromflat(cls, flat):
raise NotImplementedError
@@ -191,14 +200,14 @@ class DiagGaussianPd(Pd):
def mode(self):
return self.mean
def neglogp(self, x):
return 0.5 * U.sum(tf.square((x - self.mean) / self.std), axis=-1) \
return 0.5 * tf.reduce_sum(tf.square((x - self.mean) / self.std), axis=-1) \
+ 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[-1]) \
+ U.sum(self.logstd, axis=-1)
+ tf.reduce_sum(self.logstd, axis=-1)
def kl(self, other):
assert isinstance(other, DiagGaussianPd)
return U.sum(other.logstd - self.logstd + (tf.square(self.std) + tf.square(self.mean - other.mean)) / (2.0 * tf.square(other.std)) - 0.5, axis=-1)
return tf.reduce_sum(other.logstd - self.logstd + (tf.square(self.std) + tf.square(self.mean - other.mean)) / (2.0 * tf.square(other.std)) - 0.5, axis=-1)
def entropy(self):
return U.sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1)
return tf.reduce_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1)
def sample(self):
return self.mean + self.std * tf.random_normal(tf.shape(self.mean))
@classmethod
@@ -214,11 +223,11 @@ class BernoulliPd(Pd):
def mode(self):
return tf.round(self.ps)
def neglogp(self, x):
return U.sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.to_float(x)), axis=-1)
return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.to_float(x)), axis=-1)
def kl(self, other):
return U.sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=other.logits, labels=self.ps), axis=-1) - U.sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=self.ps), axis=-1)
return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=other.logits, labels=self.ps), axis=-1) - tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=self.ps), axis=-1)
def entropy(self):
return U.sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=self.ps), axis=-1)
return tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=self.ps), axis=-1)
def sample(self):
u = tf.random_uniform(tf.shape(self.ps))
return tf.to_float(math_ops.less(u, self.ps))
@@ -234,7 +243,7 @@ def make_pdtype(ac_space):
elif isinstance(ac_space, spaces.Discrete):
return CategoricalPdType(ac_space.n)
elif isinstance(ac_space, spaces.MultiDiscrete):
return MultiCategoricalPdType(ac_space.low, ac_space.high)
return MultiCategoricalPdType(ac_space.nvec)
elif isinstance(ac_space, spaces.MultiBinary):
return BernoulliPdType(ac_space.n)
else:
@@ -259,6 +268,11 @@ def test_probtypes():
categorical = CategoricalPdType(pdparam_categorical.size) #pylint: disable=E1101
validate_probtype(categorical, pdparam_categorical)
nvec = [1,2,3]
pdparam_multicategorical = np.array([-.2, .3, .5, .1, 1, -.1])
multicategorical = MultiCategoricalPdType(nvec) #pylint: disable=E1101
validate_probtype(multicategorical, pdparam_multicategorical)
pdparam_bernoulli = np.array([-.2, .3, .5])
bernoulli = BernoulliPdType(pdparam_bernoulli.size) #pylint: disable=E1101
validate_probtype(bernoulli, pdparam_bernoulli)
@@ -270,10 +284,10 @@ def validate_probtype(probtype, pdparam):
Mval = np.repeat(pdparam[None, :], N, axis=0)
M = probtype.param_placeholder([N])
X = probtype.sample_placeholder([N])
pd = probtype.pdclass()(M)
pd = probtype.pdfromflat(M)
calcloglik = U.function([X, M], pd.logp(X))
calcent = U.function([M], pd.entropy())
Xval = U.eval(pd.sample(), feed_dict={M:Mval})
Xval = tf.get_default_session().run(pd.sample(), feed_dict={M:Mval})
logliks = calcloglik(Xval, Mval)
entval_ll = - logliks.mean() #pylint: disable=E1101
entval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101
@@ -282,7 +296,7 @@ def validate_probtype(probtype, pdparam):
# Check to see if kldiv[p,q] = - ent[p] - E_p[log q]
M2 = probtype.param_placeholder([N])
pd2 = probtype.pdclass()(M2)
pd2 = probtype.pdfromflat(M2)
q = pdparam + np.random.randn(pdparam.size) * 0.1
Mval2 = np.repeat(q[None, :], N, axis=0)
calckl = U.function([M, M2], pd.kl(pd2))
@@ -291,3 +305,5 @@ def validate_probtype(probtype, pdparam):
klval_ll = - entval - logliks.mean() #pylint: disable=E1101
klval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101
assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas
print('ok on', probtype, pdparam)

View File

@@ -1,4 +1,4 @@
from baselines.acktr.running_stat import RunningStat
from .running_stat import RunningStat
from collections import deque
import numpy as np

View File

@@ -0,0 +1,30 @@
from gym import Env
from gym.spaces import Discrete
class IdentityEnv(Env):
def __init__(
self,
dim,
ep_length=100,
):
self.action_space = Discrete(dim)
self.reset()
def reset(self):
self._choose_next_state()
self.observation_space = self.action_space
return self.state
def step(self, actions):
rew = self._get_reward(actions)
self._choose_next_state()
return self.state, rew, False, {}
def _choose_next_state(self):
self.state = self.action_space.sample()
def _get_reward(self, actions):
return 1 if self.state == actions else 0

30
baselines/common/input.py Normal file
View File

@@ -0,0 +1,30 @@
import tensorflow as tf
from gym.spaces import Discrete, Box
def observation_input(ob_space, batch_size=None, name='Ob'):
'''
Build observation input with encoding depending on the
observation space type
Params:
ob_space: observation space (should be one of gym.spaces)
batch_size: batch size for input (default is None, so that resulting input placeholder can take tensors with any batch size)
name: tensorflow variable name for input placeholder
returns: tuple (input_placeholder, processed_input_tensor)
'''
if isinstance(ob_space, Discrete):
input_x = tf.placeholder(shape=(batch_size,), dtype=tf.int32, name=name)
processed_x = tf.to_float(tf.one_hot(input_x, ob_space.n))
return input_x, processed_x
elif isinstance(ob_space, Box):
input_shape = (batch_size,) + ob_space.shape
input_x = tf.placeholder(shape=input_shape, dtype=ob_space.dtype, name=name)
processed_x = tf.to_float(input_x)
return input_x, processed_x
else:
raise NotImplementedError

View File

@@ -224,6 +224,7 @@ def relatively_safe_pickle_dump(obj, path, compression=False):
# Using gzip here would be simpler, but the size is limited to 2GB
with tempfile.NamedTemporaryFile() as uncompressed_file:
pickle.dump(obj, uncompressed_file)
uncompressed_file.file.flush()
with zipfile.ZipFile(temp_storage, "w", compression=zipfile.ZIP_DEFLATED) as myzip:
myzip.write(uncompressed_file.name, "data")
else:

View File

@@ -53,7 +53,7 @@ class MpiAdam(object):
def test_MpiAdam():
np.random.seed(0)
tf.set_random_seed(0)
a = tf.Variable(np.random.randn(3).astype('float32'))
b = tf.Variable(np.random.randn(2,5).astype('float32'))
loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b))

View File

@@ -2,29 +2,42 @@ from mpi4py import MPI
import numpy as np
from baselines.common import zipsame
def mpi_moments(x, axis=0):
x = np.asarray(x, dtype='float64')
newshape = list(x.shape)
newshape.pop(axis)
n = np.prod(newshape,dtype=int)
totalvec = np.zeros(n*2+1, 'float64')
addvec = np.concatenate([x.sum(axis=axis).ravel(),
np.square(x).sum(axis=axis).ravel(),
np.array([x.shape[axis]],dtype='float64')])
MPI.COMM_WORLD.Allreduce(addvec, totalvec, op=MPI.SUM)
sum = totalvec[:n]
sumsq = totalvec[n:2*n]
count = totalvec[2*n]
if count == 0:
mean = np.empty(newshape); mean[:] = np.nan
std = np.empty(newshape); std[:] = np.nan
else:
mean = sum/count
std = np.sqrt(np.maximum(sumsq/count - np.square(mean),0))
def mpi_mean(x, axis=0, comm=None, keepdims=False):
x = np.asarray(x)
assert x.ndim > 0
if comm is None: comm = MPI.COMM_WORLD
xsum = x.sum(axis=axis, keepdims=keepdims)
n = xsum.size
localsum = np.zeros(n+1, x.dtype)
localsum[:n] = xsum.ravel()
localsum[n] = x.shape[axis]
globalsum = np.zeros_like(localsum)
comm.Allreduce(localsum, globalsum, op=MPI.SUM)
return globalsum[:n].reshape(xsum.shape) / globalsum[n], globalsum[n]
def mpi_moments(x, axis=0, comm=None, keepdims=False):
x = np.asarray(x)
assert x.ndim > 0
mean, count = mpi_mean(x, axis=axis, comm=comm, keepdims=True)
sqdiffs = np.square(x - mean)
meansqdiff, count1 = mpi_mean(sqdiffs, axis=axis, comm=comm, keepdims=True)
assert count1 == count
std = np.sqrt(meansqdiff)
if not keepdims:
newshape = mean.shape[:axis] + mean.shape[axis+1:]
mean = mean.reshape(newshape)
std = std.reshape(newshape)
return mean, std, count
def test_runningmeanstd():
import subprocess
subprocess.check_call(['mpirun', '-np', '3',
'python','-c',
'from baselines.common.mpi_moments import _helper_runningmeanstd; _helper_runningmeanstd()'])
def _helper_runningmeanstd():
comm = MPI.COMM_WORLD
np.random.seed(0)
for (triple,axis) in [
@@ -45,6 +58,3 @@ def test_runningmeanstd():
assert np.allclose(a1, a2)
print("ok!")
if __name__ == "__main__":
#mpirun -np 3 python <script>
test_runningmeanstd()

View File

@@ -57,7 +57,7 @@ def test_runningmeanstd():
rms.update(x1)
rms.update(x2)
rms.update(x3)
ms2 = U.eval([rms.mean, rms.std])
ms2 = [rms.mean.eval(), rms.std.eval()]
assert np.allclose(ms1, ms2)
@@ -94,11 +94,11 @@ def test_dist():
assert checkallclose(
bigvec.mean(axis=0),
U.eval(rms.mean)
rms.mean.eval(),
)
assert checkallclose(
bigvec.std(axis=0),
U.eval(rms.std)
rms.std.eval(),
)

View File

@@ -0,0 +1,18 @@
import numpy as np
from abc import ABC, abstractmethod
class AbstractEnvRunner(ABC):
def __init__(self, *, env, model, nsteps):
self.env = env
self.model = model
nenv = env.num_envs
self.batch_ob_shape = (nenv*nsteps,) + env.observation_space.shape
self.obs = np.zeros((nenv,) + env.observation_space.shape, dtype=env.observation_space.dtype.name)
self.obs[:] = env.reset()
self.nsteps = nsteps
self.states = model.initial_state
self.dones = [False for _ in range(nenv)]
@abstractmethod
def run(self):
raise NotImplementedError

View File

@@ -0,0 +1,46 @@
import numpy as np
class RunningMeanStd(object):
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
def __init__(self, epsilon=1e-4, shape=()):
self.mean = np.zeros(shape, 'float64')
self.var = np.ones(shape, 'float64')
self.count = epsilon
def update(self, x):
batch_mean = np.mean(x, axis=0)
batch_var = np.var(x, axis=0)
batch_count = x.shape[0]
self.update_from_moments(batch_mean, batch_var, batch_count)
def update_from_moments(self, batch_mean, batch_var, batch_count):
delta = batch_mean - self.mean
tot_count = self.count + batch_count
new_mean = self.mean + delta * batch_count / tot_count
m_a = self.var * (self.count)
m_b = batch_var * (batch_count)
M2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count)
new_var = M2 / (self.count + batch_count)
new_count = batch_count + self.count
self.mean = new_mean
self.var = new_var
self.count = new_count
def test_runningmeanstd():
for (x1, x2, x3) in [
(np.random.randn(3), np.random.randn(4), np.random.randn(5)),
(np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),
]:
rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:])
x = np.concatenate([x1, x2, x3], axis=0)
ms1 = [x.mean(axis=0), x.var(axis=0)]
rms.update(x1)
rms.update(x2)
rms.update(x3)
ms2 = [rms.mean, rms.var]
assert np.allclose(ms1, ms2)

View File

@@ -12,10 +12,9 @@ class SegmentTree(object):
a) setting item's value is slightly slower.
It is O(lg capacity) instead of O(1).
b) user has access to an efficient `reduce`
operation which reduces `operation` over
a contiguous subsequence of items in the
array.
b) user has access to an efficient ( O(log segment size) )
`reduce` operation which reduces `operation` over
a contiguous subsequence of items in the array.
Paramters
---------
@@ -23,8 +22,8 @@ class SegmentTree(object):
Total size of the array - must be a power of two.
operation: lambda obj, obj -> obj
and operation for combining elements (eg. sum, max)
must for a mathematical group together with the set of
possible values for array elements.
must form a mathematical group together with the set of
possible values for array elements (i.e. be associative)
neutral_element: obj
neutral element for the operation above. eg. float('-inf')
for max and 0 for sum.

View File

@@ -0,0 +1,44 @@
import pytest
import tensorflow as tf
import random
import numpy as np
from gym.spaces import np_random
from baselines.a2c import a2c
from baselines.ppo2 import ppo2
from baselines.common.identity_env import IdentityEnv
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.ppo2.policies import MlpPolicy
learn_func_list = [
lambda e: a2c.learn(policy=MlpPolicy, env=e, seed=0, total_timesteps=50000),
lambda e: ppo2.learn(policy=MlpPolicy, env=e, total_timesteps=50000, lr=1e-3, nsteps=128, ent_coef=0.01)
]
@pytest.mark.slow
@pytest.mark.parametrize("learn_func", learn_func_list)
def test_identity(learn_func):
'''
Test if the algorithm (with a given policy)
can learn an identity transformation (i.e. return observation as an action)
'''
np.random.seed(0)
np_random.seed(0)
random.seed(0)
env = DummyVecEnv([lambda: IdentityEnv(10)])
with tf.Graph().as_default(), tf.Session().as_default():
tf.set_random_seed(0)
model = learn_func(env)
N_TRIALS = 1000
sum_rew = 0
obs = env.reset()
for i in range(N_TRIALS):
obs, rew, done, _ = env.step(model.step(obs)[0])
sum_rew += rew
assert sum_rew > 0.9 * N_TRIALS

View File

@@ -3,67 +3,38 @@ import tensorflow as tf
from baselines.common.tf_util import (
function,
initialize,
set_value,
single_threaded_session
)
def test_set_value():
a = tf.Variable(42.)
with single_threaded_session():
set_value(a, 5)
assert a.eval() == 5
g = tf.get_default_graph()
g.finalize()
set_value(a, 6)
assert a.eval() == 6
# test the test
try:
assert a.eval() == 7
except AssertionError:
pass
else:
assert False, "assertion should have failed"
def test_function():
tf.reset_default_graph()
x = tf.placeholder(tf.int32, (), name="x")
y = tf.placeholder(tf.int32, (), name="y")
z = 3 * x + 2 * y
lin = function([x, y], z, givens={y: 0})
with tf.Graph().as_default():
x = tf.placeholder(tf.int32, (), name="x")
y = tf.placeholder(tf.int32, (), name="y")
z = 3 * x + 2 * y
lin = function([x, y], z, givens={y: 0})
with single_threaded_session():
initialize()
with single_threaded_session():
initialize()
assert lin(2) == 6
assert lin(x=3) == 9
assert lin(2, 2) == 10
assert lin(x=2, y=3) == 12
assert lin(2) == 6
assert lin(2, 2) == 10
def test_multikwargs():
tf.reset_default_graph()
x = tf.placeholder(tf.int32, (), name="x")
with tf.variable_scope("other"):
x2 = tf.placeholder(tf.int32, (), name="x")
z = 3 * x + 2 * x2
with tf.Graph().as_default():
x = tf.placeholder(tf.int32, (), name="x")
with tf.variable_scope("other"):
x2 = tf.placeholder(tf.int32, (), name="x")
z = 3 * x + 2 * x2
lin = function([x, x2], z, givens={x2: 0})
with single_threaded_session():
initialize()
assert lin(2) == 6
assert lin(2, 2) == 10
expt_caught = False
try:
lin(x=2)
except AssertionError:
expt_caught = True
assert expt_caught
lin = function([x, x2], z, givens={x2: 0})
with single_threaded_session():
initialize()
assert lin(2) == 6
assert lin(2, 2) == 10
if __name__ == '__main__':
test_set_value()
test_function()
test_multikwargs()

View File

@@ -1,45 +1,10 @@
import numpy as np
import tensorflow as tf # pylint: ignore-module
import builtins
import functools
import copy
import os
import functools
import collections
# ================================================================
# Make consistent with numpy
# ================================================================
clip = tf.clip_by_value
def sum(x, axis=None, keepdims=False):
axis = None if axis is None else [axis]
return tf.reduce_sum(x, axis=axis, keep_dims=keepdims)
def mean(x, axis=None, keepdims=False):
axis = None if axis is None else [axis]
return tf.reduce_mean(x, axis=axis, keep_dims=keepdims)
def var(x, axis=None, keepdims=False):
meanx = mean(x, axis=axis, keepdims=keepdims)
return mean(tf.square(x - meanx), axis=axis, keepdims=keepdims)
def std(x, axis=None, keepdims=False):
return tf.sqrt(var(x, axis=axis, keepdims=keepdims))
def max(x, axis=None, keepdims=False):
axis = None if axis is None else [axis]
return tf.reduce_max(x, axis=axis, keep_dims=keepdims)
def min(x, axis=None, keepdims=False):
axis = None if axis is None else [axis]
return tf.reduce_min(x, axis=axis, keep_dims=keepdims)
def concatenate(arrs, axis=0):
return tf.concat(axis=axis, values=arrs)
def argmax(x, axis=None):
return tf.argmax(x, axis=axis)
import multiprocessing
def switch(condition, then_expression, else_expression):
"""Switches between two operations depending on a scalar value (int or bool).
@@ -62,105 +27,11 @@ def switch(condition, then_expression, else_expression):
# Extras
# ================================================================
def l2loss(params):
if len(params) == 0:
return tf.constant(0.0)
else:
return tf.add_n([sum(tf.square(p)) for p in params])
def lrelu(x, leak=0.2):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
def categorical_sample_logits(X):
# https://github.com/tensorflow/tensorflow/issues/456
U = tf.random_uniform(tf.shape(X))
return argmax(X - tf.log(-tf.log(U)), axis=1)
# ================================================================
# Inputs
# ================================================================
def is_placeholder(x):
return type(x) is tf.Tensor and len(x.op.inputs) == 0
class TfInput(object):
def __init__(self, name="(unnamed)"):
"""Generalized Tensorflow placeholder. The main differences are:
- possibly uses multiple placeholders internally and returns multiple values
- can apply light postprocessing to the value feed to placeholder.
"""
self.name = name
def get(self):
"""Return the tf variable(s) representing the possibly postprocessed value
of placeholder(s).
"""
raise NotImplemented()
def make_feed_dict(data):
"""Given data input it to the placeholder(s)."""
raise NotImplemented()
class PlacholderTfInput(TfInput):
def __init__(self, placeholder):
"""Wrapper for regular tensorflow placeholder."""
super().__init__(placeholder.name)
self._placeholder = placeholder
def get(self):
return self._placeholder
def make_feed_dict(self, data):
return {self._placeholder: data}
class BatchInput(PlacholderTfInput):
def __init__(self, shape, dtype=tf.float32, name=None):
"""Creates a placeholder for a batch of tensors of a given shape and dtype
Parameters
----------
shape: [int]
shape of a single elemenet of the batch
dtype: tf.dtype
number representation used for tensor contents
name: str
name of the underlying placeholder
"""
super().__init__(tf.placeholder(dtype, [None] + list(shape), name=name))
class Uint8Input(PlacholderTfInput):
def __init__(self, shape, name=None):
"""Takes input in uint8 format which is cast to float32 and divided by 255
before passing it to the model.
On GPU this ensures lower data transfer times.
Parameters
----------
shape: [int]
shape of the tensor.
name: str
name of the underlying placeholder
"""
super().__init__(tf.placeholder(tf.uint8, [None] + list(shape), name=name))
self._shape = shape
self._output = tf.cast(super().get(), tf.float32) / 255.0
def get(self):
return self._output
def ensure_tf_input(thing):
"""Takes either tf.placeholder of TfInput and outputs equivalent TfInput"""
if isinstance(thing, TfInput):
return thing
elif is_placeholder(thing):
return PlacholderTfInput(thing)
else:
raise ValueError("Must be a placeholder or TfInput")
# ================================================================
# Mathematical utils
# ================================================================
@@ -173,86 +44,49 @@ def huber_loss(x, delta=1.0):
delta * (tf.abs(x) - 0.5 * delta)
)
# ================================================================
# Optimizer utils
# ================================================================
def minimize_and_clip(optimizer, objective, var_list, clip_val=10):
"""Minimized `objective` using `optimizer` w.r.t. variables in
`var_list` while ensure the norm of the gradients for each
variable is clipped to `clip_val`
"""
gradients = optimizer.compute_gradients(objective, var_list=var_list)
for i, (grad, var) in enumerate(gradients):
if grad is not None:
gradients[i] = (tf.clip_by_norm(grad, clip_val), var)
return optimizer.apply_gradients(gradients)
# ================================================================
# Global session
# ================================================================
def get_session():
"""Returns recently made Tensorflow session"""
return tf.get_default_session()
def make_session(num_cpu):
def make_session(num_cpu=None, make_default=False, graph=None):
"""Returns a session that will use <num_cpu> CPU's only"""
if num_cpu is None:
num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count()))
tf_config = tf.ConfigProto(
inter_op_parallelism_threads=num_cpu,
intra_op_parallelism_threads=num_cpu)
return tf.Session(config=tf_config)
if make_default:
return tf.InteractiveSession(config=tf_config, graph=graph)
else:
return tf.Session(config=tf_config, graph=graph)
def single_threaded_session():
"""Returns a session which will only use a single CPU"""
return make_session(1)
return make_session(num_cpu=1)
def in_session(f):
@functools.wraps(f)
def newfunc(*args, **kwargs):
with tf.Session():
f(*args, **kwargs)
return newfunc
ALREADY_INITIALIZED = set()
def initialize():
"""Initialize all the uninitialized variables in the global scope."""
new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED
get_session().run(tf.variables_initializer(new_variables))
tf.get_default_session().run(tf.variables_initializer(new_variables))
ALREADY_INITIALIZED.update(new_variables)
def eval(expr, feed_dict=None):
if feed_dict is None:
feed_dict = {}
return get_session().run(expr, feed_dict=feed_dict)
VALUE_SETTERS = collections.OrderedDict()
def set_value(v, val):
global VALUE_SETTERS
if v in VALUE_SETTERS:
set_op, set_endpoint = VALUE_SETTERS[v]
else:
set_endpoint = tf.placeholder(v.dtype)
set_op = v.assign(set_endpoint)
VALUE_SETTERS[v] = (set_op, set_endpoint)
get_session().run(set_op, feed_dict={set_endpoint: val})
# ================================================================
# Saving variables
# ================================================================
def load_state(fname):
saver = tf.train.Saver()
saver.restore(get_session(), fname)
def save_state(fname):
os.makedirs(os.path.dirname(fname), exist_ok=True)
saver = tf.train.Saver()
saver.save(get_session(), fname)
# ================================================================
# Model components
# ================================================================
def normc_initializer(std=1.0):
def normc_initializer(std=1.0, axis=0):
def _initializer(shape, dtype=None, partition_info=None): # pylint: disable=W0613
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
out *= std / np.sqrt(np.square(out).sum(axis=axis, keepdims=True))
return tf.constant(out)
return _initializer
@@ -285,36 +119,6 @@ def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME",
return tf.nn.conv2d(x, w, stride_shape, pad) + b
def dense(x, size, name, weight_init=None, bias=True):
w = tf.get_variable(name + "/w", [x.get_shape()[1], size], initializer=weight_init)
ret = tf.matmul(x, w)
if bias:
b = tf.get_variable(name + "/b", [size], initializer=tf.zeros_initializer())
return ret + b
else:
return ret
def wndense(x, size, name, init_scale=1.0):
v = tf.get_variable(name + "/V", [int(x.get_shape()[1]), size],
initializer=tf.random_normal_initializer(0, 0.05))
g = tf.get_variable(name + "/g", [size], initializer=tf.constant_initializer(init_scale))
b = tf.get_variable(name + "/b", [size], initializer=tf.constant_initializer(0.0))
# use weight normalization (Salimans & Kingma, 2016)
x = tf.matmul(x, v)
scaler = g / tf.sqrt(sum(tf.square(v), axis=0, keepdims=True))
return tf.reshape(scaler, [1, size]) * x + tf.reshape(b, [1, size])
def densenobias(x, size, name, weight_init=None):
return dense(x, size, name, weight_init=weight_init, bias=False)
def dropout(x, pkeep, phase=None, mask=None):
mask = tf.floor(pkeep + tf.random_uniform(tf.shape(x))) if mask is None else mask
if phase is None:
return mask * x
else:
return switch(phase, mask * x, pkeep * x)
# ================================================================
# Theano-like Function
# ================================================================
@@ -344,7 +148,7 @@ def function(inputs, outputs, updates=None, givens=None):
Parameters
----------
inputs: [tf.placeholder or TfInput]
inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method]
list of input arguments
outputs: [tf.Variable] or tf.Variable
list of outputs or a single output to be returned from function. Returned
@@ -359,183 +163,36 @@ def function(inputs, outputs, updates=None, givens=None):
f = _Function(inputs, [outputs], updates, givens=givens)
return lambda *args, **kwargs: f(*args, **kwargs)[0]
class _Function(object):
def __init__(self, inputs, outputs, updates, givens, check_nan=False):
def __init__(self, inputs, outputs, updates, givens):
for inpt in inputs:
if not issubclass(type(inpt), TfInput):
assert len(inpt.op.inputs) == 0, "inputs should all be placeholders of baselines.common.TfInput"
if not hasattr(inpt, 'make_feed_dict') and not (type(inpt) is tf.Tensor and len(inpt.op.inputs) == 0):
assert False, "inputs should all be placeholders, constants, or have a make_feed_dict method"
self.inputs = inputs
updates = updates or []
self.update_group = tf.group(*updates)
self.outputs_update = list(outputs) + [self.update_group]
self.givens = {} if givens is None else givens
self.check_nan = check_nan
def _feed_input(self, feed_dict, inpt, value):
if issubclass(type(inpt), TfInput):
if hasattr(inpt, 'make_feed_dict'):
feed_dict.update(inpt.make_feed_dict(value))
elif is_placeholder(inpt):
else:
feed_dict[inpt] = value
def __call__(self, *args, **kwargs):
def __call__(self, *args):
assert len(args) <= len(self.inputs), "Too many arguments provided"
feed_dict = {}
# Update the args
for inpt, value in zip(self.inputs, args):
self._feed_input(feed_dict, inpt, value)
# Update the kwargs
kwargs_passed_inpt_names = set()
for inpt in self.inputs[len(args):]:
inpt_name = inpt.name.split(':')[0]
inpt_name = inpt_name.split('/')[-1]
assert inpt_name not in kwargs_passed_inpt_names, \
"this function has two arguments with the same name \"{}\", so kwargs cannot be used.".format(inpt_name)
if inpt_name in kwargs:
kwargs_passed_inpt_names.add(inpt_name)
self._feed_input(feed_dict, inpt, kwargs.pop(inpt_name))
else:
assert inpt in self.givens, "Missing argument " + inpt_name
assert len(kwargs) == 0, "Function got extra arguments " + str(list(kwargs.keys()))
# Update feed dict with givens.
for inpt in self.givens:
feed_dict[inpt] = feed_dict.get(inpt, self.givens[inpt])
results = get_session().run(self.outputs_update, feed_dict=feed_dict)[:-1]
if self.check_nan:
if any(np.isnan(r).any() for r in results):
raise RuntimeError("Nan detected")
results = tf.get_default_session().run(self.outputs_update, feed_dict=feed_dict)[:-1]
return results
def mem_friendly_function(nondata_inputs, data_inputs, outputs, batch_size):
if isinstance(outputs, list):
return _MemFriendlyFunction(nondata_inputs, data_inputs, outputs, batch_size)
else:
f = _MemFriendlyFunction(nondata_inputs, data_inputs, [outputs], batch_size)
return lambda *inputs: f(*inputs)[0]
class _MemFriendlyFunction(object):
def __init__(self, nondata_inputs, data_inputs, outputs, batch_size):
self.nondata_inputs = nondata_inputs
self.data_inputs = data_inputs
self.outputs = list(outputs)
self.batch_size = batch_size
def __call__(self, *inputvals):
assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs)
nondata_vals = inputvals[0:len(self.nondata_inputs)]
data_vals = inputvals[len(self.nondata_inputs):]
feed_dict = dict(zip(self.nondata_inputs, nondata_vals))
n = data_vals[0].shape[0]
for v in data_vals[1:]:
assert v.shape[0] == n
for i_start in range(0, n, self.batch_size):
slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals]
for (var, val) in zip(self.data_inputs, slice_vals):
feed_dict[var] = val
results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict)
if i_start == 0:
sum_results = results
else:
for i in range(len(results)):
sum_results[i] = sum_results[i] + results[i]
for i in range(len(results)):
sum_results[i] = sum_results[i] / n
return sum_results
# ================================================================
# Modules
# ================================================================
class Module(object):
def __init__(self, name):
self.name = name
self.first_time = True
self.scope = None
self.cache = {}
def __call__(self, *args):
if args in self.cache:
print("(%s) retrieving value from cache" % (self.name,))
return self.cache[args]
with tf.variable_scope(self.name, reuse=not self.first_time):
scope = tf.get_variable_scope().name
if self.first_time:
self.scope = scope
print("(%s) running function for the first time" % (self.name,))
else:
assert self.scope == scope, "Tried calling function with a different scope"
print("(%s) running function on new inputs" % (self.name,))
self.first_time = False
out = self._call(*args)
self.cache[args] = out
return out
def _call(self, *args):
raise NotImplementedError
@property
def trainable_variables(self):
assert self.scope is not None, "need to call module once before getting variables"
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope)
@property
def variables(self):
assert self.scope is not None, "need to call module once before getting variables"
return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, self.scope)
def module(name):
@functools.wraps
def wrapper(f):
class WrapperModule(Module):
def _call(self, *args):
return f(*args)
return WrapperModule(name)
return wrapper
# ================================================================
# Graph traversal
# ================================================================
VARIABLES = {}
def get_parents(node):
return node.op.inputs
def topsorted(outputs):
"""
Topological sort via non-recursive depth-first search
"""
assert isinstance(outputs, (list, tuple))
marks = {}
out = []
stack = [] # pylint: disable=W0621
# i: node
# jidx = number of children visited so far from that node
# marks: state of each node, which is one of
# 0: haven't visited
# 1: have visited, but not done visiting children
# 2: done visiting children
for x in outputs:
stack.append((x, 0))
while stack:
(i, jidx) = stack.pop()
if jidx == 0:
m = marks.get(i, 0)
if m == 0:
marks[i] = 1
elif m == 1:
raise ValueError("not a dag")
else:
continue
ps = get_parents(i)
if jidx == len(ps):
marks[i] = 2
out.append(i)
else:
stack.append((i, jidx + 1))
j = ps[jidx]
stack.append((j, 0))
return out
# ================================================================
# Flat vectors
# ================================================================
@@ -577,88 +234,14 @@ class SetFromFlat(object):
self.op = tf.group(*assigns)
def __call__(self, theta):
get_session().run(self.op, feed_dict={self.theta: theta})
tf.get_default_session().run(self.op, feed_dict={self.theta: theta})
class GetFlat(object):
def __init__(self, var_list):
self.op = tf.concat(axis=0, values=[tf.reshape(v, [numel(v)]) for v in var_list])
def __call__(self):
return get_session().run(self.op)
# ================================================================
# Misc
# ================================================================
def fancy_slice_2d(X, inds0, inds1):
"""
like numpy X[inds0, inds1]
XXX this implementation is bad
"""
inds0 = tf.cast(inds0, tf.int64)
inds1 = tf.cast(inds1, tf.int64)
shape = tf.cast(tf.shape(X), tf.int64)
ncols = shape[1]
Xflat = tf.reshape(X, [-1])
return tf.gather(Xflat, inds0 * ncols + inds1)
# ================================================================
# Scopes
# ================================================================
def scope_vars(scope, trainable_only=False):
"""
Get variables inside a scope
The scope can be specified as a string
Parameters
----------
scope: str or VariableScope
scope in which the variables reside.
trainable_only: bool
whether or not to return only the variables that were marked as trainable.
Returns
-------
vars: [tf.Variable]
list of variables in `scope`.
"""
return tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.GLOBAL_VARIABLES,
scope=scope if isinstance(scope, str) else scope.name
)
def scope_name():
"""Returns the name of current scope as a string, e.g. deepq/q_func"""
return tf.get_variable_scope().name
def absolute_scope_name(relative_scope_name):
"""Appends parent scope name to `relative_scope_name`"""
return scope_name() + "/" + relative_scope_name
def lengths_to_mask(lengths_b, max_length):
"""
Turns a vector of lengths into a boolean mask
Args:
lengths_b: an integer vector of lengths
max_length: maximum length to fill the mask
Returns:
a boolean array of shape (batch_size, max_length)
row[i] consists of True repeated lengths_b[i] times, followed by False
"""
lengths_b = tf.convert_to_tensor(lengths_b)
assert lengths_b.get_shape().ndims == 1
mask_bt = tf.expand_dims(tf.range(max_length), 0) < tf.expand_dims(lengths_b, 1)
return mask_bt
def in_session(f):
@functools.wraps(f)
def newfunc(*args, **kwargs):
with tf.Session():
f(*args, **kwargs)
return newfunc
return tf.get_default_session().run(self.op)
_PLACEHOLDER_CACHE = {} # name -> (placeholder, dtype, shape)
@@ -678,9 +261,44 @@ def get_placeholder_cached(name):
def flattenallbut0(x):
return tf.reshape(x, [-1, intprod(x.get_shape().as_list()[1:])])
def reset():
global _PLACEHOLDER_CACHE
global VARIABLES
_PLACEHOLDER_CACHE = {}
VARIABLES = {}
tf.reset_default_graph()
# ================================================================
# Diagnostics
# ================================================================
def display_var_info(vars):
from baselines import logger
count_params = 0
for v in vars:
name = v.name
if "/Adam" in name or "beta1_power" in name or "beta2_power" in name: continue
v_params = np.prod(v.shape.as_list())
count_params += v_params
if "/b:" in name or "/biases" in name: continue # Wx+b, bias is not interesting to look at => count params, but not print
logger.info(" %s%s %i params %s" % (name, " "*(55-len(name)), v_params, str(v.shape)))
logger.info("Total model parameters: %0.2f million" % (count_params*1e-6))
def get_available_gpus():
# recipe from here:
# https://stackoverflow.com/questions/38559755/how-to-get-current-available-gpus-in-tensorflow?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
from tensorflow.python.client import device_lib
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']
# ================================================================
# Saving variables
# ================================================================
def load_state(fname):
saver = tf.train.Saver()
saver.restore(tf.get_default_session(), fname)
def save_state(fname):
os.makedirs(os.path.dirname(fname), exist_ok=True)
saver = tf.train.Saver()
saver.save(tf.get_default_session(), fname)

View File

@@ -0,0 +1,23 @@
import numpy as np
def tile_images(img_nhwc):
"""
Tile N images into one big PxQ image
(P,Q) are chosen to be as close as possible, and if N
is square, then P=Q.
input: img_nhwc, list or array of images, ndim=4 once turned into array
n = batch index, h = height, w = width, c = channel
returns:
bigim_HWc, ndarray with ndim=3
"""
img_nhwc = np.asarray(img_nhwc)
N, h, w, c = img_nhwc.shape
H = int(np.ceil(np.sqrt(N)))
W = int(np.ceil(float(N)/H))
img_nhwc = np.array(list(img_nhwc) + [img_nhwc[0]*0 for _ in range(N, H*W)])
img_HWhwc = img_nhwc.reshape(H, W, h, w, c)
img_HhWwc = img_HWhwc.transpose(0, 2, 1, 3, 4)
img_Hh_Ww_c = img_HhWwc.reshape(H*h, W*w, c)
return img_Hh_Ww_c

View File

@@ -1,19 +1,126 @@
class VecEnv(object):
"""
Vectorized environment base class
"""
def step(self, vac):
"""
Apply sequence of actions to sequence of environments
actions -> (observations, rewards, news)
from abc import ABC, abstractmethod
from baselines import logger
where 'news' is a boolean vector indicating whether each element is new.
"""
raise NotImplementedError
class AlreadySteppingError(Exception):
"""
Raised when an asynchronous step is running while
step_async() is called again.
"""
def __init__(self):
msg = 'already running an async step'
Exception.__init__(self, msg)
class NotSteppingError(Exception):
"""
Raised when an asynchronous step is not running but
step_wait() is called.
"""
def __init__(self):
msg = 'not running an async step'
Exception.__init__(self, msg)
class VecEnv(ABC):
"""
An abstract asynchronous, vectorized environment.
"""
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.observation_space = observation_space
self.action_space = action_space
@abstractmethod
def reset(self):
"""
Reset all environments
Reset all the environments and return an array of
observations, or a tuple of observation arrays.
If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.
"""
raise NotImplementedError
pass
@abstractmethod
def step_async(self, actions):
"""
Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.
You should not call this if a step_async run is
already pending.
"""
pass
@abstractmethod
def step_wait(self):
"""
Wait for the step taken with step_async().
Returns (obs, rews, dones, infos):
- obs: an array of observations, or a tuple of
arrays of observations.
- rews: an array of rewards
- dones: an array of "episode done" booleans
- infos: a sequence of info objects
"""
pass
@abstractmethod
def close(self):
pass
"""
Clean up the environments' resources.
"""
pass
def step(self, actions):
self.step_async(actions)
return self.step_wait()
def render(self, mode='human'):
logger.warn('Render not defined for %s'%self)
@property
def unwrapped(self):
if isinstance(self, VecEnvWrapper):
return self.venv.unwrapped
else:
return self
class VecEnvWrapper(VecEnv):
def __init__(self, venv, observation_space=None, action_space=None):
self.venv = venv
VecEnv.__init__(self,
num_envs=venv.num_envs,
observation_space=observation_space or venv.observation_space,
action_space=action_space or venv.action_space)
def step_async(self, actions):
self.venv.step_async(actions)
@abstractmethod
def reset(self):
pass
@abstractmethod
def step_wait(self):
pass
def close(self):
return self.venv.close()
def render(self):
self.venv.render()
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)

View File

@@ -0,0 +1,67 @@
import numpy as np
from gym import spaces
from collections import OrderedDict
from . import VecEnv
class DummyVecEnv(VecEnv):
def __init__(self, env_fns):
self.envs = [fn() for fn in env_fns]
env = self.envs[0]
VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space)
shapes, dtypes = {}, {}
self.keys = []
obs_space = env.observation_space
if isinstance(obs_space, spaces.Dict):
assert isinstance(obs_space.spaces, OrderedDict)
subspaces = obs_space.spaces
else:
subspaces = {None: obs_space}
for key, box in subspaces.items():
shapes[key] = box.shape
dtypes[key] = box.dtype
self.keys.append(key)
self.buf_obs = { k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys }
self.buf_dones = np.zeros((self.num_envs,), dtype=np.bool)
self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32)
self.buf_infos = [{} for _ in range(self.num_envs)]
self.actions = None
def step_async(self, actions):
self.actions = actions
def step_wait(self):
for e in range(self.num_envs):
obs, self.buf_rews[e], self.buf_dones[e], self.buf_infos[e] = self.envs[e].step(self.actions[e])
if self.buf_dones[e]:
obs = self.envs[e].reset()
self._save_obs(e, obs)
return (self._obs_from_buf(), np.copy(self.buf_rews), np.copy(self.buf_dones),
self.buf_infos.copy())
def reset(self):
for e in range(self.num_envs):
obs = self.envs[e].reset()
self._save_obs(e, obs)
return self._obs_from_buf()
def close(self):
return
def render(self, mode='human'):
return [e.render(mode=mode) for e in self.envs]
def _save_obs(self, e, obs):
for k in self.keys:
if k is None:
self.buf_obs[k][e] = obs
else:
self.buf_obs[k][e] = obs[k]
def _obs_from_buf(self):
if self.keys==[None]:
return self.buf_obs[None]
else:
return self.buf_obs

View File

@@ -1,6 +1,7 @@
import numpy as np
from multiprocessing import Process, Pipe
from baselines.common.vec_env import VecEnv
from baselines.common.vec_env import VecEnv, CloudpickleWrapper
from baselines.common.tile_images import tile_images
def worker(remote, parent_remote, env_fn_wrapper):
@@ -16,37 +17,23 @@ def worker(remote, parent_remote, env_fn_wrapper):
elif cmd == 'reset':
ob = env.reset()
remote.send(ob)
elif cmd == 'reset_task':
ob = env.reset_task()
remote.send(ob)
elif cmd == 'render':
remote.send(env.render(mode='rgb_array'))
elif cmd == 'close':
remote.close()
break
elif cmd == 'get_spaces':
remote.send((env.action_space, env.observation_space))
remote.send((env.observation_space, env.action_space))
else:
raise NotImplementedError
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)
class SubprocVecEnv(VecEnv):
def __init__(self, env_fns):
def __init__(self, env_fns, spaces=None):
"""
envs: list of gym environments to run in subprocesses
"""
self.waiting = False
self.closed = False
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
@@ -59,13 +46,17 @@ class SubprocVecEnv(VecEnv):
remote.close()
self.remotes[0].send(('get_spaces', None))
self.action_space, self.observation_space = self.remotes[0].recv()
observation_space, action_space = self.remotes[0].recv()
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
def step(self, actions):
def step_async(self, actions):
for remote, action in zip(self.remotes, actions):
remote.send(('step', action))
self.waiting = True
def step_wait(self):
results = [remote.recv() for remote in self.remotes]
self.waiting = False
obs, rews, dones, infos = zip(*results)
return np.stack(obs), np.stack(rews), np.stack(dones), infos
@@ -82,13 +73,25 @@ class SubprocVecEnv(VecEnv):
def close(self):
if self.closed:
return
if self.waiting:
for remote in self.remotes:
remote.recv()
for remote in self.remotes:
remote.send(('close', None))
for p in self.ps:
p.join()
self.closed = True
@property
def num_envs(self):
return len(self.remotes)
def render(self, mode='human'):
for pipe in self.remotes:
pipe.send(('render', None))
imgs = [pipe.recv() for pipe in self.remotes]
bigimg = tile_images(imgs)
if mode == 'human':
import cv2
cv2.imshow('vecenv', bigimg[:,:,::-1])
cv2.waitKey(1)
elif mode == 'rgb_array':
return bigimg
else:
raise NotImplementedError

View File

@@ -0,0 +1,38 @@
from baselines.common.vec_env import VecEnvWrapper
import numpy as np
from gym import spaces
class VecFrameStack(VecEnvWrapper):
"""
Vectorized environment base class
"""
def __init__(self, venv, nstack):
self.venv = venv
self.nstack = nstack
wos = venv.observation_space # wrapped ob space
low = np.repeat(wos.low, self.nstack, axis=-1)
high = np.repeat(wos.high, self.nstack, axis=-1)
self.stackedobs = np.zeros((venv.num_envs,)+low.shape, low.dtype)
observation_space = spaces.Box(low=low, high=high, dtype=venv.observation_space.dtype)
VecEnvWrapper.__init__(self, venv, observation_space=observation_space)
def step_wait(self):
obs, rews, news, infos = self.venv.step_wait()
self.stackedobs = np.roll(self.stackedobs, shift=-1, axis=-1)
for (i, new) in enumerate(news):
if new:
self.stackedobs[i] = 0
self.stackedobs[..., -obs.shape[-1]:] = obs
return self.stackedobs, rews, news, infos
def reset(self):
"""
Reset all environments
"""
obs = self.venv.reset()
self.stackedobs[...] = 0
self.stackedobs[..., -obs.shape[-1]:] = obs
return self.stackedobs
def close(self):
self.venv.close()

View File

@@ -0,0 +1,47 @@
from baselines.common.vec_env import VecEnvWrapper
from baselines.common.running_mean_std import RunningMeanStd
import numpy as np
class VecNormalize(VecEnvWrapper):
"""
Vectorized environment base class
"""
def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8):
VecEnvWrapper.__init__(self, venv)
self.ob_rms = RunningMeanStd(shape=self.observation_space.shape) if ob else None
self.ret_rms = RunningMeanStd(shape=()) if ret else None
self.clipob = clipob
self.cliprew = cliprew
self.ret = np.zeros(self.num_envs)
self.gamma = gamma
self.epsilon = epsilon
def step_wait(self):
"""
Apply sequence of actions to sequence of environments
actions -> (observations, rewards, news)
where 'news' is a boolean vector indicating whether each element is new.
"""
obs, rews, news, infos = self.venv.step_wait()
self.ret = self.ret * self.gamma + rews
obs = self._obfilt(obs)
if self.ret_rms:
self.ret_rms.update(self.ret)
rews = np.clip(rews / np.sqrt(self.ret_rms.var + self.epsilon), -self.cliprew, self.cliprew)
return obs, rews, news, infos
def _obfilt(self, obs):
if self.ob_rms:
self.ob_rms.update(obs)
obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob)
return obs
else:
return obs
def reset(self):
"""
Reset all environments
"""
obs = self.venv.reset()
return self._obfilt(obs)

View File

@@ -9,8 +9,7 @@ from baselines import logger
from baselines.common.mpi_adam import MpiAdam
import baselines.common.tf_util as U
from baselines.common.mpi_running_mean_std import RunningMeanStd
from baselines.ddpg.util import reduce_std, mpi_mean
from mpi4py import MPI
def normalize(x, stats):
if stats is None:
@@ -23,6 +22,13 @@ def denormalize(x, stats):
return x
return x * stats.std + stats.mean
def reduce_std(x, axis=None, keepdims=False):
return tf.sqrt(reduce_var(x, axis=axis, keepdims=keepdims))
def reduce_var(x, axis=None, keepdims=False):
m = tf.reduce_mean(x, axis=axis, keep_dims=True)
devs_squared = tf.square(x - m)
return tf.reduce_mean(devs_squared, axis=axis, keep_dims=keepdims)
def get_target_updates(vars, target_vars, tau):
logger.info('setting up target updates ...')
@@ -198,7 +204,7 @@ class DDPG(object):
new_std = self.ret_rms.std
self.old_mean = tf.placeholder(tf.float32, shape=[1], name='old_mean')
new_mean = self.ret_rms.mean
self.renormalize_Q_outputs_op = []
for vs in [self.critic.output_vars, self.target_critic.output_vars]:
assert len(vs) == 2
@@ -213,15 +219,15 @@ class DDPG(object):
def setup_stats(self):
ops = []
names = []
if self.normalize_returns:
ops += [self.ret_rms.mean, self.ret_rms.std]
names += ['ret_rms_mean', 'ret_rms_std']
if self.normalize_observations:
ops += [tf.reduce_mean(self.obs_rms.mean), tf.reduce_mean(self.obs_rms.std)]
names += ['obs_rms_mean', 'obs_rms_std']
ops += [tf.reduce_mean(self.critic_tf)]
names += ['reference_Q_mean']
ops += [reduce_std(self.critic_tf)]
@@ -231,7 +237,7 @@ class DDPG(object):
names += ['reference_actor_Q_mean']
ops += [reduce_std(self.critic_with_actor_tf)]
names += ['reference_actor_Q_std']
ops += [tf.reduce_mean(self.actor_tf)]
names += ['reference_action_mean']
ops += [reduce_std(self.actor_tf)]
@@ -347,7 +353,7 @@ class DDPG(object):
def adapt_param_noise(self):
if self.param_noise is None:
return 0.
# Perturb a separate copy of the policy to adjust the scale for the next "real" perturbation.
batch = self.memory.sample(batch_size=self.batch_size)
self.sess.run(self.perturb_adaptive_policy_ops, feed_dict={
@@ -358,7 +364,7 @@ class DDPG(object):
self.param_noise_stddev: self.param_noise.current_stddev,
})
mean_distance = mpi_mean(distance)
mean_distance = MPI.COMM_WORLD.allreduce(distance, op=MPI.SUM) / MPI.COMM_WORLD.Get_size()
self.param_noise.adapt(mean_distance)
return mean_distance

View File

@@ -25,7 +25,6 @@ def run(env_id, seed, noise_type, layer_norm, evaluation, **kwargs):
# Create envs.
env = gym.make(env_id)
env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
gym.logger.setLevel(logging.WARN)
if evaluation and rank==0:
eval_env = gym.make(env_id)

View File

@@ -4,7 +4,6 @@ from collections import deque
import pickle
from baselines.ddpg.ddpg import DDPG
from baselines.ddpg.util import mpi_mean, mpi_std, mpi_max, mpi_sum
import baselines.common.tf_util as U
from baselines import logger
@@ -35,7 +34,7 @@ def train(env, nb_epochs, nb_epoch_cycles, render_eval, reward_scale, render, pa
saver = tf.train.Saver()
else:
saver = None
step = 0
episode = 0
eval_episode_rewards_history = deque(maxlen=100)
@@ -110,7 +109,7 @@ def train(env, nb_epochs, nb_epoch_cycles, render_eval, reward_scale, render, pa
epoch_adaptive_distances = []
for t_train in range(nb_train_steps):
# Adapt param noise, if necessary.
if memory.nb_entries >= batch_size and t % param_noise_adaption_interval == 0:
if memory.nb_entries >= batch_size and t_train % param_noise_adaption_interval == 0:
distance = agent.adapt_param_noise()
epoch_adaptive_distances.append(distance)
@@ -138,42 +137,46 @@ def train(env, nb_epochs, nb_epoch_cycles, render_eval, reward_scale, render, pa
eval_episode_rewards_history.append(eval_episode_reward)
eval_episode_reward = 0.
mpi_size = MPI.COMM_WORLD.Get_size()
# Log stats.
epoch_train_duration = time.time() - epoch_start_time
# XXX shouldn't call np.mean on variable length lists
duration = time.time() - start_time
stats = agent.get_stats()
combined_stats = {}
for key in sorted(stats.keys()):
combined_stats[key] = mpi_mean(stats[key])
# Rollout statistics.
combined_stats['rollout/return'] = mpi_mean(epoch_episode_rewards)
combined_stats['rollout/return_history'] = mpi_mean(np.mean(episode_rewards_history))
combined_stats['rollout/episode_steps'] = mpi_mean(epoch_episode_steps)
combined_stats['rollout/episodes'] = mpi_sum(epoch_episodes)
combined_stats['rollout/actions_mean'] = mpi_mean(epoch_actions)
combined_stats['rollout/actions_std'] = mpi_std(epoch_actions)
combined_stats['rollout/Q_mean'] = mpi_mean(epoch_qs)
# Train statistics.
combined_stats['train/loss_actor'] = mpi_mean(epoch_actor_losses)
combined_stats['train/loss_critic'] = mpi_mean(epoch_critic_losses)
combined_stats['train/param_noise_distance'] = mpi_mean(epoch_adaptive_distances)
combined_stats = stats.copy()
combined_stats['rollout/return'] = np.mean(epoch_episode_rewards)
combined_stats['rollout/return_history'] = np.mean(episode_rewards_history)
combined_stats['rollout/episode_steps'] = np.mean(epoch_episode_steps)
combined_stats['rollout/actions_mean'] = np.mean(epoch_actions)
combined_stats['rollout/Q_mean'] = np.mean(epoch_qs)
combined_stats['train/loss_actor'] = np.mean(epoch_actor_losses)
combined_stats['train/loss_critic'] = np.mean(epoch_critic_losses)
combined_stats['train/param_noise_distance'] = np.mean(epoch_adaptive_distances)
combined_stats['total/duration'] = duration
combined_stats['total/steps_per_second'] = float(t) / float(duration)
combined_stats['total/episodes'] = episodes
combined_stats['rollout/episodes'] = epoch_episodes
combined_stats['rollout/actions_std'] = np.std(epoch_actions)
# Evaluation statistics.
if eval_env is not None:
combined_stats['eval/return'] = mpi_mean(eval_episode_rewards)
combined_stats['eval/return_history'] = mpi_mean(np.mean(eval_episode_rewards_history))
combined_stats['eval/Q'] = mpi_mean(eval_qs)
combined_stats['eval/episodes'] = mpi_mean(len(eval_episode_rewards))
combined_stats['eval/return'] = eval_episode_rewards
combined_stats['eval/return_history'] = np.mean(eval_episode_rewards_history)
combined_stats['eval/Q'] = eval_qs
combined_stats['eval/episodes'] = len(eval_episode_rewards)
def as_scalar(x):
if isinstance(x, np.ndarray):
assert x.size == 1
return x[0]
elif np.isscalar(x):
return x
else:
raise ValueError('expected scalar, got %s'%x)
combined_stats_sums = MPI.COMM_WORLD.allreduce(np.array([as_scalar(x) for x in combined_stats.values()]))
combined_stats = {k : v / mpi_size for (k,v) in zip(combined_stats.keys(), combined_stats_sums)}
# Total statistics.
combined_stats['total/duration'] = mpi_mean(duration)
combined_stats['total/steps_per_second'] = mpi_mean(float(t) / float(duration))
combined_stats['total/episodes'] = mpi_mean(episodes)
combined_stats['total/epochs'] = epoch + 1
combined_stats['total/steps'] = t
for key in sorted(combined_stats.keys()):
logger.record_tabular(key, combined_stats[key])
logger.dump_tabular()
@@ -186,4 +189,3 @@ def train(env, nb_epochs, nb_epoch_cycles, render_eval, reward_scale, render, pa
if eval_env and hasattr(eval_env, 'get_state'):
with open(os.path.join(logdir, 'eval_env_state.pkl'), 'wb') as f:
pickle.dump(eval_env.get_state(), f)

View File

@@ -1,44 +0,0 @@
import numpy as np
import tensorflow as tf
from mpi4py import MPI
from baselines.common.mpi_moments import mpi_moments
def reduce_var(x, axis=None, keepdims=False):
m = tf.reduce_mean(x, axis=axis, keep_dims=True)
devs_squared = tf.square(x - m)
return tf.reduce_mean(devs_squared, axis=axis, keep_dims=keepdims)
def reduce_std(x, axis=None, keepdims=False):
return tf.sqrt(reduce_var(x, axis=axis, keepdims=keepdims))
def mpi_mean(value):
if value == []:
value = [0.]
if not isinstance(value, list):
value = [value]
return mpi_moments(np.array(value))[0][0]
def mpi_std(value):
if value == []:
value = [0.]
if not isinstance(value, list):
value = [value]
return mpi_moments(np.array(value))[1][0]
def mpi_max(value):
global_max = np.zeros(1, dtype='float64')
local_max = np.max(value).astype('float64')
MPI.COMM_WORLD.Reduce(local_max, global_max, op=MPI.MAX)
return global_max[0]
def mpi_sum(value):
global_sum = np.zeros(1, dtype='float64')
local_sum = np.sum(np.array(value)).astype('float64')
MPI.COMM_WORLD.Reduce(local_sum, global_sum, op=MPI.SUM)
return global_sum[0]

View File

@@ -97,6 +97,37 @@ import tensorflow as tf
import baselines.common.tf_util as U
def scope_vars(scope, trainable_only=False):
"""
Get variables inside a scope
The scope can be specified as a string
Parameters
----------
scope: str or VariableScope
scope in which the variables reside.
trainable_only: bool
whether or not to return only the variables that were marked as trainable.
Returns
-------
vars: [tf.Variable]
list of variables in `scope`.
"""
return tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.GraphKeys.GLOBAL_VARIABLES,
scope=scope if isinstance(scope, str) else scope.name
)
def scope_name():
"""Returns the name of current scope as a string, e.g. deepq/q_func"""
return tf.get_variable_scope().name
def absolute_scope_name(relative_scope_name):
"""Appends parent scope name to `relative_scope_name`"""
return scope_name() + "/" + relative_scope_name
def default_param_noise_filter(var):
if var not in tf.trainable_variables():
# We never perturb non-trainable vars.
@@ -143,7 +174,7 @@ def build_act(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None):
` See the top of the file for details.
"""
with tf.variable_scope(scope, reuse=reuse):
observations_ph = U.ensure_tf_input(make_obs_ph("observation"))
observations_ph = make_obs_ph("observation")
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
@@ -159,10 +190,12 @@ def build_act(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None):
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph],
_act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph],
outputs=output_actions,
givens={update_eps_ph: -1.0, stochastic_ph: True},
updates=[update_eps_expr])
def act(ob, stochastic=True, update_eps=-1):
return _act(ob, stochastic, update_eps)
return act
@@ -203,7 +236,7 @@ def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope="deepq",
param_noise_filter_func = default_param_noise_filter
with tf.variable_scope(scope, reuse=reuse):
observations_ph = U.ensure_tf_input(make_obs_ph("observation"))
observations_ph = make_obs_ph("observation")
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
@@ -223,8 +256,8 @@ def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope="deepq",
# https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for
# a more detailed discussion.
def perturb_vars(original_scope, perturbed_scope):
all_vars = U.scope_vars(U.absolute_scope_name("q_func"))
all_perturbed_vars = U.scope_vars(U.absolute_scope_name("perturbed_q_func"))
all_vars = scope_vars(absolute_scope_name(original_scope))
all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope))
assert len(all_vars) == len(all_perturbed_vars)
perturb_ops = []
for var, perturbed_var in zip(all_vars, all_perturbed_vars):
@@ -272,10 +305,12 @@ def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope="deepq",
tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
update_param_noise_threshold_expr,
]
act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph],
_act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph],
outputs=output_actions,
givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False},
updates=updates)
def act(ob, reset, update_param_noise_threshold, update_param_noise_scale, stochastic=True, update_eps=-1):
return _act(ob, stochastic, update_eps, reset, update_param_noise_threshold, update_param_noise_scale)
return act
@@ -342,20 +377,20 @@ def build_train(make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=
with tf.variable_scope(scope, reuse=reuse):
# set up placeholders
obs_t_input = U.ensure_tf_input(make_obs_ph("obs_t"))
obs_t_input = make_obs_ph("obs_t")
act_t_ph = tf.placeholder(tf.int32, [None], name="action")
rew_t_ph = tf.placeholder(tf.float32, [None], name="reward")
obs_tp1_input = U.ensure_tf_input(make_obs_ph("obs_tp1"))
obs_tp1_input = make_obs_ph("obs_tp1")
done_mask_ph = tf.placeholder(tf.float32, [None], name="done")
importance_weights_ph = tf.placeholder(tf.float32, [None], name="weight")
# q network evaluation
q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act
q_func_vars = U.scope_vars(U.absolute_scope_name("q_func"))
q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/q_func")
# target q network evalution
q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func")
target_q_func_vars = U.scope_vars(U.absolute_scope_name("target_q_func"))
target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/target_q_func")
# q scores for actions which we know were selected in the given state.
q_t_selected = tf.reduce_sum(q_t * tf.one_hot(act_t_ph, num_actions), 1)
@@ -363,7 +398,7 @@ def build_train(make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=
# compute estimate of best possible value starting from state at t + 1
if double_q:
q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True)
q_tp1_best_using_online_net = tf.arg_max(q_tp1_using_online_net, 1)
q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1)
q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1)
else:
q_tp1_best = tf.reduce_max(q_tp1, 1)
@@ -379,10 +414,11 @@ def build_train(make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=
# compute optimization op (potentially with gradient clipping)
if grad_norm_clipping is not None:
optimize_expr = U.minimize_and_clip(optimizer,
weighted_error,
var_list=q_func_vars,
clip_val=grad_norm_clipping)
gradients = optimizer.compute_gradients(weighted_error, var_list=q_func_vars)
for i, (grad, var) in enumerate(gradients):
if grad is not None:
gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var)
optimize_expr = optimizer.apply_gradients(gradients)
else:
optimize_expr = optimizer.minimize(weighted_error, var_list=q_func_vars)

View File

@@ -1,51 +0,0 @@
import argparse
import progressbar
from baselines.common.azure_utils import Container
def parse_args():
parser = argparse.ArgumentParser("Download a pretrained model from Azure.")
# Environment
parser.add_argument("--model-dir", type=str, default=None,
help="save model in this directory this directory. ")
parser.add_argument("--account-name", type=str, default="openaisciszymon",
help="account name for Azure Blob Storage")
parser.add_argument("--account-key", type=str, default=None,
help="account key for Azure Blob Storage")
parser.add_argument("--container", type=str, default="dqn-blogpost",
help="container name and blob name separated by colon serparated by colon")
parser.add_argument("--blob", type=str, default=None, help="blob with the model")
return parser.parse_args()
def main():
args = parse_args()
c = Container(account_name=args.account_name,
account_key=args.account_key,
container_name=args.container)
if args.blob is None:
print("Listing available models:")
print()
for blob in sorted(c.list(prefix="model-")):
print(blob)
else:
print("Downloading {} to {}...".format(args.blob, args.model_dir))
bar = None
def callback(current, total):
nonlocal bar
if bar is None:
bar = progressbar.ProgressBar(max_value=total)
bar.update(current)
assert c.exists(args.blob), "model {} does not exist".format(args.blob)
assert args.model_dir is not None
c.get(args.model_dir, args.blob, callback=callback)
if __name__ == '__main__':
main()

View File

@@ -1,70 +0,0 @@
import argparse
import gym
import os
import numpy as np
from gym.monitoring import VideoRecorder
import baselines.common.tf_util as U
from baselines import deepq
from baselines.common.misc_util import (
boolean_flag,
)
from baselines import bench
from baselines.common.atari_wrappers_deprecated import wrap_dqn
from baselines.deepq.experiments.atari.model import model, dueling_model
def parse_args():
parser = argparse.ArgumentParser("Run an already learned DQN model.")
# Environment
parser.add_argument("--env", type=str, required=True, help="name of the game")
parser.add_argument("--model-dir", type=str, default=None, help="load model from this directory. ")
parser.add_argument("--video", type=str, default=None, help="Path to mp4 file where the video of first episode will be recorded.")
boolean_flag(parser, "stochastic", default=True, help="whether or not to use stochastic actions according to models eps value")
boolean_flag(parser, "dueling", default=False, help="whether or not to use dueling model")
return parser.parse_args()
def make_env(game_name):
env = gym.make(game_name + "NoFrameskip-v4")
env = bench.Monitor(env, None)
env = wrap_dqn(env)
return env
def play(env, act, stochastic, video_path):
num_episodes = 0
video_recorder = None
video_recorder = VideoRecorder(
env, video_path, enabled=video_path is not None)
obs = env.reset()
while True:
env.unwrapped.render()
video_recorder.capture_frame()
action = act(np.array(obs)[None], stochastic=stochastic)[0]
obs, rew, done, info = env.step(action)
if done:
obs = env.reset()
if len(info["rewards"]) > num_episodes:
if len(info["rewards"]) == 1 and video_recorder.enabled:
# save video of first episode
print("Saved video.")
video_recorder.close()
video_recorder.enabled = False
print(info["rewards"][-1])
num_episodes = len(info["rewards"])
if __name__ == '__main__':
with U.make_session(4) as sess:
args = parse_args()
env = make_env(args.env)
act = deepq.build_act(
make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
q_func=dueling_model if args.dueling else model,
num_actions=env.action_space.n)
U.load_state(os.path.join(args.model_dir, "saved"))
play(env, act, args.stochastic, args.video)

View File

@@ -1,60 +0,0 @@
import tensorflow as tf
import tensorflow.contrib.layers as layers
def layer_norm_fn(x, relu=True):
x = layers.layer_norm(x, scale=True, center=True)
if relu:
x = tf.nn.relu(x)
return x
def model(img_in, num_actions, scope, reuse=False, layer_norm=False):
"""As described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf"""
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
conv_out = layers.flatten(out)
with tf.variable_scope("action_value"):
value_out = layers.fully_connected(conv_out, num_outputs=512, activation_fn=None)
if layer_norm:
value_out = layer_norm_fn(value_out, relu=True)
else:
value_out = tf.nn.relu(value_out)
value_out = layers.fully_connected(value_out, num_outputs=num_actions, activation_fn=None)
return value_out
def dueling_model(img_in, num_actions, scope, reuse=False, layer_norm=False):
"""As described in https://arxiv.org/abs/1511.06581"""
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
conv_out = layers.flatten(out)
with tf.variable_scope("state_value"):
state_hidden = layers.fully_connected(conv_out, num_outputs=512, activation_fn=None)
if layer_norm:
state_hidden = layer_norm_fn(state_hidden, relu=True)
else:
state_hidden = tf.nn.relu(state_hidden)
state_score = layers.fully_connected(state_hidden, num_outputs=1, activation_fn=None)
with tf.variable_scope("action_value"):
actions_hidden = layers.fully_connected(conv_out, num_outputs=512, activation_fn=None)
if layer_norm:
actions_hidden = layer_norm_fn(actions_hidden, relu=True)
else:
actions_hidden = tf.nn.relu(actions_hidden)
action_scores = layers.fully_connected(actions_hidden, num_outputs=num_actions, activation_fn=None)
action_scores_mean = tf.reduce_mean(action_scores, 1)
action_scores = action_scores - tf.expand_dims(action_scores_mean, 1)
return state_score + action_scores

View File

@@ -1,273 +0,0 @@
import argparse
import gym
import numpy as np
import os
import tensorflow as tf
import tempfile
import time
import json
import baselines.common.tf_util as U
from baselines import logger
from baselines import deepq
from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer
from baselines.common.misc_util import (
boolean_flag,
pickle_load,
pretty_eta,
relatively_safe_pickle_dump,
set_global_seeds,
RunningAvg,
)
from baselines.common.schedules import LinearSchedule, PiecewiseSchedule
from baselines import bench
from baselines.common.atari_wrappers_deprecated import wrap_dqn
from baselines.common.azure_utils import Container
from .model import model, dueling_model
def parse_args():
parser = argparse.ArgumentParser("DQN experiments for Atari games")
# Environment
parser.add_argument("--env", type=str, default="Pong", help="name of the game")
parser.add_argument("--seed", type=int, default=42, help="which seed to use")
# Core DQN parameters
parser.add_argument("--replay-buffer-size", type=int, default=int(1e6), help="replay buffer size")
parser.add_argument("--lr", type=float, default=1e-4, help="learning rate for Adam optimizer")
parser.add_argument("--num-steps", type=int, default=int(2e8), help="total number of steps to run the environment for")
parser.add_argument("--batch-size", type=int, default=32, help="number of transitions to optimize at the same time")
parser.add_argument("--learning-freq", type=int, default=4, help="number of iterations between every optimization step")
parser.add_argument("--target-update-freq", type=int, default=40000, help="number of iterations between every target network update")
parser.add_argument("--param-noise-update-freq", type=int, default=50, help="number of iterations between every re-scaling of the parameter noise")
parser.add_argument("--param-noise-reset-freq", type=int, default=10000, help="maximum number of steps to take per episode before re-perturbing the exploration policy")
# Bells and whistles
boolean_flag(parser, "double-q", default=True, help="whether or not to use double q learning")
boolean_flag(parser, "dueling", default=False, help="whether or not to use dueling model")
boolean_flag(parser, "prioritized", default=False, help="whether or not to use prioritized replay buffer")
boolean_flag(parser, "param-noise", default=False, help="whether or not to use parameter space noise for exploration")
boolean_flag(parser, "layer-norm", default=False, help="whether or not to use layer norm (should be True if param_noise is used)")
boolean_flag(parser, "gym-monitor", default=False, help="whether or not to use a OpenAI Gym monitor (results in slower training due to video recording)")
parser.add_argument("--prioritized-alpha", type=float, default=0.6, help="alpha parameter for prioritized replay buffer")
parser.add_argument("--prioritized-beta0", type=float, default=0.4, help="initial value of beta parameters for prioritized replay")
parser.add_argument("--prioritized-eps", type=float, default=1e-6, help="eps parameter for prioritized replay buffer")
# Checkpointing
parser.add_argument("--save-dir", type=str, default=None, help="directory in which training state and model should be saved.")
parser.add_argument("--save-azure-container", type=str, default=None,
help="It present data will saved/loaded from Azure. Should be in format ACCOUNT_NAME:ACCOUNT_KEY:CONTAINER")
parser.add_argument("--save-freq", type=int, default=1e6, help="save model once every time this many iterations are completed")
boolean_flag(parser, "load-on-start", default=True, help="if true and model was previously saved then training will be resumed")
return parser.parse_args()
def make_env(game_name):
env = gym.make(game_name + "NoFrameskip-v4")
monitored_env = bench.Monitor(env, logger.get_dir()) # puts rewards and number of steps in info, before environment is wrapped
env = wrap_dqn(monitored_env) # applies a bunch of modification to simplify the observation space (downsample, make b/w)
return env, monitored_env
def maybe_save_model(savedir, container, state):
"""This function checkpoints the model and state of the training algorithm."""
if savedir is None:
return
start_time = time.time()
model_dir = "model-{}".format(state["num_iters"])
U.save_state(os.path.join(savedir, model_dir, "saved"))
if container is not None:
container.put(os.path.join(savedir, model_dir), model_dir)
relatively_safe_pickle_dump(state, os.path.join(savedir, 'training_state.pkl.zip'), compression=True)
if container is not None:
container.put(os.path.join(savedir, 'training_state.pkl.zip'), 'training_state.pkl.zip')
relatively_safe_pickle_dump(state["monitor_state"], os.path.join(savedir, 'monitor_state.pkl'))
if container is not None:
container.put(os.path.join(savedir, 'monitor_state.pkl'), 'monitor_state.pkl')
logger.log("Saved model in {} seconds\n".format(time.time() - start_time))
def maybe_load_model(savedir, container):
"""Load model if present at the specified path."""
if savedir is None:
return
state_path = os.path.join(os.path.join(savedir, 'training_state.pkl.zip'))
if container is not None:
logger.log("Attempting to download model from Azure")
found_model = container.get(savedir, 'training_state.pkl.zip')
else:
found_model = os.path.exists(state_path)
if found_model:
state = pickle_load(state_path, compression=True)
model_dir = "model-{}".format(state["num_iters"])
if container is not None:
container.get(savedir, model_dir)
U.load_state(os.path.join(savedir, model_dir, "saved"))
logger.log("Loaded models checkpoint at {} iterations".format(state["num_iters"]))
return state
if __name__ == '__main__':
args = parse_args()
# Parse savedir and azure container.
savedir = args.save_dir
if savedir is None:
savedir = os.getenv('OPENAI_LOGDIR', None)
if args.save_azure_container is not None:
account_name, account_key, container_name = args.save_azure_container.split(":")
container = Container(account_name=account_name,
account_key=account_key,
container_name=container_name,
maybe_create=True)
if savedir is None:
# Careful! This will not get cleaned up. Docker spoils the developers.
savedir = tempfile.TemporaryDirectory().name
else:
container = None
# Create and seed the env.
env, monitored_env = make_env(args.env)
if args.seed > 0:
set_global_seeds(args.seed)
env.unwrapped.seed(args.seed)
if args.gym_monitor and savedir:
env = gym.wrappers.Monitor(env, os.path.join(savedir, 'gym_monitor'), force=True)
if savedir:
with open(os.path.join(savedir, 'args.json'), 'w') as f:
json.dump(vars(args), f)
with U.make_session(4) as sess:
# Create training graph and replay buffer
def model_wrapper(img_in, num_actions, scope, **kwargs):
actual_model = dueling_model if args.dueling else model
return actual_model(img_in, num_actions, scope, layer_norm=args.layer_norm, **kwargs)
act, train, update_target, debug = deepq.build_train(
make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
q_func=model_wrapper,
num_actions=env.action_space.n,
optimizer=tf.train.AdamOptimizer(learning_rate=args.lr, epsilon=1e-4),
gamma=0.99,
grad_norm_clipping=10,
double_q=args.double_q,
param_noise=args.param_noise
)
approximate_num_iters = args.num_steps / 4
exploration = PiecewiseSchedule([
(0, 1.0),
(approximate_num_iters / 50, 0.1),
(approximate_num_iters / 5, 0.01)
], outside_value=0.01)
if args.prioritized:
replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size, args.prioritized_alpha)
beta_schedule = LinearSchedule(approximate_num_iters, initial_p=args.prioritized_beta0, final_p=1.0)
else:
replay_buffer = ReplayBuffer(args.replay_buffer_size)
U.initialize()
update_target()
num_iters = 0
# Load the model
state = maybe_load_model(savedir, container)
if state is not None:
num_iters, replay_buffer = state["num_iters"], state["replay_buffer"],
monitored_env.set_state(state["monitor_state"])
start_time, start_steps = None, None
steps_per_iter = RunningAvg(0.999)
iteration_time_est = RunningAvg(0.999)
obs = env.reset()
num_iters_since_reset = 0
reset = True
# Main trianing loop
while True:
num_iters += 1
num_iters_since_reset += 1
# Take action and store transition in the replay buffer.
kwargs = {}
if not args.param_noise:
update_eps = exploration.value(num_iters)
update_param_noise_threshold = 0.
else:
if args.param_noise_reset_freq > 0 and num_iters_since_reset > args.param_noise_reset_freq:
# Reset param noise policy since we have exceeded the maximum number of steps without a reset.
reset = True
update_eps = 0.01 # ensures that we cannot get stuck completely
# Compute the threshold such that the KL divergence between perturbed and non-perturbed
# policy is comparable to eps-greedy exploration with eps = exploration.value(t).
# See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
# for detailed explanation.
update_param_noise_threshold = -np.log(1. - exploration.value(num_iters) + exploration.value(num_iters) / float(env.action_space.n))
kwargs['reset'] = reset
kwargs['update_param_noise_threshold'] = update_param_noise_threshold
kwargs['update_param_noise_scale'] = (num_iters % args.param_noise_update_freq == 0)
action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
reset = False
new_obs, rew, done, info = env.step(action)
replay_buffer.add(obs, action, rew, new_obs, float(done))
obs = new_obs
if done:
num_iters_since_reset = 0
obs = env.reset()
reset = True
if (num_iters > max(5 * args.batch_size, args.replay_buffer_size // 20) and
num_iters % args.learning_freq == 0):
# Sample a bunch of transitions from replay buffer
if args.prioritized:
experience = replay_buffer.sample(args.batch_size, beta=beta_schedule.value(num_iters))
(obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
else:
obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(args.batch_size)
weights = np.ones_like(rewards)
# Minimize the error in Bellman's equation and compute TD-error
td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
# Update the priorities in the replay buffer
if args.prioritized:
new_priorities = np.abs(td_errors) + args.prioritized_eps
replay_buffer.update_priorities(batch_idxes, new_priorities)
# Update target network.
if num_iters % args.target_update_freq == 0:
update_target()
if start_time is not None:
steps_per_iter.update(info['steps'] - start_steps)
iteration_time_est.update(time.time() - start_time)
start_time, start_steps = time.time(), info["steps"]
# Save the model and training state.
if num_iters > 0 and (num_iters % args.save_freq == 0 or info["steps"] > args.num_steps):
maybe_save_model(savedir, container, {
'replay_buffer': replay_buffer,
'num_iters': num_iters,
'monitor_state': monitored_env.get_state(),
})
if info["steps"] > args.num_steps:
break
if done:
steps_left = args.num_steps - info["steps"]
completion = np.round(info["steps"] / args.num_steps, 1)
logger.record_tabular("% completion", completion)
logger.record_tabular("steps", info["steps"])
logger.record_tabular("iters", num_iters)
logger.record_tabular("episodes", len(info["rewards"]))
logger.record_tabular("reward (100 epi mean)", np.mean(info["rewards"][-100:]))
logger.record_tabular("exploration", exploration.value(num_iters))
if args.prioritized:
logger.record_tabular("max priority", replay_buffer._max_priority)
fps_estimate = (float(steps_per_iter) / (float(iteration_time_est) + 1e-6)
if steps_per_iter._value is not None else "calculating...")
logger.dump_tabular()
logger.log()
logger.log("ETA: " + pretty_eta(int(steps_left / fps_estimate)))
logger.log()

View File

@@ -1,81 +0,0 @@
import argparse
import gym
import numpy as np
import os
import baselines.common.tf_util as U
from baselines import deepq, bench
from baselines.common.misc_util import get_wrapper_by_name, boolean_flag, set_global_seeds
from baselines.common.atari_wrappers_deprecated import wrap_dqn
from baselines.deepq.experiments.atari.model import model, dueling_model
def make_env(game_name):
env = gym.make(game_name + "NoFrameskip-v4")
env_monitored = bench.Monitor(env, None)
env = wrap_dqn(env_monitored)
return env_monitored, env
def parse_args():
parser = argparse.ArgumentParser("Evaluate an already learned DQN model.")
# Environment
parser.add_argument("--env", type=str, required=True, help="name of the game")
parser.add_argument("--model-dir", type=str, default=None, help="load model from this directory. ")
boolean_flag(parser, "stochastic", default=True, help="whether or not to use stochastic actions according to models eps value")
boolean_flag(parser, "dueling", default=False, help="whether or not to use dueling model")
return parser.parse_args()
def wang2015_eval(game_name, act, stochastic):
print("==================== wang2015 evaluation ====================")
episode_rewards = []
for num_noops in range(1, 31):
env_monitored, eval_env = make_env(game_name)
eval_env.unwrapped.seed(1)
get_wrapper_by_name(eval_env, "NoopResetEnv").override_num_noops = num_noops
eval_episode_steps = 0
done = True
while True:
if done:
obs = eval_env.reset()
eval_episode_steps += 1
action = act(np.array(obs)[None], stochastic=stochastic)[0]
obs, _reward, done, info = eval_env.step(action)
if done:
obs = eval_env.reset()
if len(info["rewards"]) > 0:
episode_rewards.append(info["rewards"][0])
break
if info["steps"] > 108000: # 5 minutes of gameplay
episode_rewards.append(sum(env_monitored.rewards))
break
print("Num steps in episode {} was {} yielding {} reward".format(
num_noops, eval_episode_steps, episode_rewards[-1]), flush=True)
print("Evaluation results: " + str(np.mean(episode_rewards)))
print("=============================================================")
return np.mean(episode_rewards)
def main():
set_global_seeds(1)
args = parse_args()
with U.make_session(4): # noqa
_, env = make_env(args.env)
act = deepq.build_act(
make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name),
q_func=dueling_model if args.dueling else model,
num_actions=env.action_space.n)
U.load_state(os.path.join(args.model_dir, "saved"))
wang2015_eval(args.env, act, stochastic=args.stochastic)
if __name__ == '__main__':
main()

View File

@@ -9,6 +9,7 @@ import baselines.common.tf_util as U
from baselines import logger
from baselines import deepq
from baselines.deepq.replay_buffer import ReplayBuffer
from baselines.deepq.utils import ObservationInput
from baselines.common.schedules import LinearSchedule
@@ -27,7 +28,7 @@ if __name__ == '__main__':
env = gym.make("CartPole-v0")
# Create all the functions necessary to train the model
act, train, update_target, debug = deepq.build_train(
make_obs_ph=lambda name: U.BatchInput(env.observation_space.shape, name=name),
make_obs_ph=lambda name: ObservationInput(env.observation_space, name=name),
q_func=model,
num_actions=env.action_space.n,
optimizer=tf.train.AdamOptimizer(learning_rate=5e-4),

View File

@@ -1,5 +1,3 @@
import gym
from baselines import deepq
from baselines.common import set_global_seeds
from baselines import bench
@@ -7,13 +5,18 @@ import argparse
from baselines import logger
from baselines.common.atari_wrappers import make_atari
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--env', help='environment ID', default='BreakoutNoFrameskip-v4')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--prioritized', type=int, default=1)
parser.add_argument('--prioritized-replay-alpha', type=float, default=0.6)
parser.add_argument('--dueling', type=int, default=1)
parser.add_argument('--num-timesteps', type=int, default=int(10e6))
parser.add_argument('--checkpoint-freq', type=int, default=10000)
parser.add_argument('--checkpoint-path', type=str, default=None)
args = parser.parse_args()
logger.configure()
set_global_seeds(args.seed)
@@ -25,7 +28,8 @@ def main():
hiddens=[256],
dueling=bool(args.dueling),
)
act = deepq.learn(
deepq.learn(
env,
q_func=model,
lr=1e-4,
@@ -37,9 +41,12 @@ def main():
learning_starts=10000,
target_network_update_freq=1000,
gamma=0.99,
prioritized_replay=bool(args.prioritized)
prioritized_replay=bool(args.prioritized),
prioritized_replay_alpha=args.prioritized_replay_alpha,
checkpoint_freq=args.checkpoint_freq,
checkpoint_path=args.checkpoint_path,
)
# act.save("pong_model.pkl") XXX
env.close()

View File

@@ -3,7 +3,7 @@ import gym
from baselines import deepq
def callback(lcl, glb):
def callback(lcl, _glb):
# stop training if reward exceeds 199
is_solved = lcl['t'] > 100 and sum(lcl['episode_rewards'][-101:-1]) / 100 >= 199
return is_solved

View File

@@ -6,7 +6,7 @@ from baselines.common.segment_tree import SumSegmentTree, MinSegmentTree
class ReplayBuffer(object):
def __init__(self, size):
"""Create Prioritized Replay buffer.
"""Create Replay buffer.
Parameters
----------
@@ -86,7 +86,7 @@ class PrioritizedReplayBuffer(ReplayBuffer):
ReplayBuffer.__init__
"""
super(PrioritizedReplayBuffer, self).__init__(size)
assert alpha > 0
assert alpha >= 0
self._alpha = alpha
it_capacity = 1

View File

@@ -6,12 +6,15 @@ import zipfile
import cloudpickle
import numpy as np
import gym
import baselines.common.tf_util as U
from baselines.common.tf_util import load_state, save_state
from baselines import logger
from baselines.common.schedules import LinearSchedule
from baselines.common.input import observation_input
from baselines import deepq
from baselines.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer
from baselines.deepq.utils import ObservationInput
class ActWrapper(object):
@@ -32,7 +35,7 @@ class ActWrapper(object):
f.write(model_data)
zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td)
U.load_state(os.path.join(td, "model"))
load_state(os.path.join(td, "model"))
return ActWrapper(act, act_params)
@@ -45,7 +48,7 @@ class ActWrapper(object):
path = os.path.join(logger.get_dir(), "model.pkl")
with tempfile.TemporaryDirectory() as td:
U.save_state(os.path.join(td, "model"))
save_state(os.path.join(td, "model"))
arc_name = os.path.join(td, "packed.zip")
with zipfile.ZipFile(arc_name, 'w') as zipf:
for root, dirs, files in os.walk(td):
@@ -87,6 +90,7 @@ def learn(env,
batch_size=32,
print_freq=100,
checkpoint_freq=10000,
checkpoint_path=None,
learning_starts=1000,
gamma=1.0,
target_network_update_freq=500,
@@ -169,9 +173,9 @@ def learn(env,
# capture the shape outside the closure so that the env object is not serialized
# by cloudpickle when serializing make_obs_ph
observation_space_shape = env.observation_space.shape
def make_obs_ph(name):
return U.BatchInput(observation_space_shape, name=name)
return ObservationInput(env.observation_space, name=name)
act, train, update_target, debug = deepq.build_train(
make_obs_ph=make_obs_ph,
@@ -215,9 +219,17 @@ def learn(env,
saved_mean_reward = None
obs = env.reset()
reset = True
with tempfile.TemporaryDirectory() as td:
model_saved = False
td = checkpoint_path or td
model_file = os.path.join(td, "model")
model_saved = False
if tf.train.latest_checkpoint(td) is not None:
load_state(model_file)
logger.log('Loaded model from {}'.format(model_file))
model_saved = True
for t in range(max_timesteps):
if callback is not None:
if callback(locals(), globals()):
@@ -238,11 +250,7 @@ def learn(env,
kwargs['update_param_noise_threshold'] = update_param_noise_threshold
kwargs['update_param_noise_scale'] = True
action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
if isinstance(env.action_space, gym.spaces.MultiBinary):
env_action = np.zeros(env.action_space.n)
env_action[action] = 1
else:
env_action = action
env_action = action
reset = False
new_obs, rew, done, _ = env.step(env_action)
# Store transition in the replay buffer.
@@ -287,12 +295,12 @@ def learn(env,
if print_freq is not None:
logger.log("Saving model due to mean reward increase: {} -> {}".format(
saved_mean_reward, mean_100ep_reward))
U.save_state(model_file)
save_state(model_file)
model_saved = True
saved_mean_reward = mean_100ep_reward
if model_saved:
if print_freq is not None:
logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
U.load_state(model_file)
load_state(model_file)
return act

View File

@@ -0,0 +1,43 @@
import tensorflow as tf
import random
from baselines import deepq
from baselines.common.identity_env import IdentityEnv
def test_identity():
with tf.Graph().as_default():
env = IdentityEnv(10)
random.seed(0)
tf.set_random_seed(0)
param_noise = False
model = deepq.models.mlp([32])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
param_noise=param_noise,
)
tf.set_random_seed(0)
N_TRIALS = 1000
sum_rew = 0
obs = env.reset()
for i in range(N_TRIALS):
obs, rew, done, _ = env.step(act([obs]))
sum_rew += rew
assert sum_rew > 0.9 * N_TRIALS
if __name__ == '__main__':
test_identity()

83
baselines/deepq/utils.py Normal file
View File

@@ -0,0 +1,83 @@
from baselines.common.input import observation_input
import tensorflow as tf
# ================================================================
# Placeholders
# ================================================================
class TfInput(object):
def __init__(self, name="(unnamed)"):
"""Generalized Tensorflow placeholder. The main differences are:
- possibly uses multiple placeholders internally and returns multiple values
- can apply light postprocessing to the value feed to placeholder.
"""
self.name = name
def get(self):
"""Return the tf variable(s) representing the possibly postprocessed value
of placeholder(s).
"""
raise NotImplemented()
def make_feed_dict(data):
"""Given data input it to the placeholder(s)."""
raise NotImplemented()
class PlaceholderTfInput(TfInput):
def __init__(self, placeholder):
"""Wrapper for regular tensorflow placeholder."""
super().__init__(placeholder.name)
self._placeholder = placeholder
def get(self):
return self._placeholder
def make_feed_dict(self, data):
return {self._placeholder: data}
class Uint8Input(PlaceholderTfInput):
def __init__(self, shape, name=None):
"""Takes input in uint8 format which is cast to float32 and divided by 255
before passing it to the model.
On GPU this ensures lower data transfer times.
Parameters
----------
shape: [int]
shape of the tensor.
name: str
name of the underlying placeholder
"""
super().__init__(tf.placeholder(tf.uint8, [None] + list(shape), name=name))
self._shape = shape
self._output = tf.cast(super().get(), tf.float32) / 255.0
def get(self):
return self._output
class ObservationInput(PlaceholderTfInput):
def __init__(self, observation_space, name=None):
"""Creates an input placeholder tailored to a specific observation space
Parameters
----------
observation_space:
observation space of the environment. Should be one of the gym.spaces types
name: str
tensorflow name of the underlying placeholder
"""
inpt, self.processed_inpt = observation_input(observation_space, name=name)
super().__init__(inpt)
def get(self):
return self.processed_inpt

52
baselines/gail/README.md Normal file
View File

@@ -0,0 +1,52 @@
# Generative Adversarial Imitation Learning (GAIL)
- Original paper: https://arxiv.org/abs/1606.03476
For results benchmarking on MuJoCo, please navigate to [here](result/gail-result.md)
## If you want to train an imitation learning agent
### Step 1: Download expert data
Download the expert data into `./data`, [download link](https://drive.google.com/drive/folders/1h3H4AY_ZBx08hz-Ct0Nxxus-V1melu1U?usp=sharing)
### Step 2: Run GAIL
Run with single thread:
```bash
python -m baselines.gail.run_mujoco
```
Run with multiple threads:
```bash
mpirun -np 16 python -m baselines.gail.run_mujoco
```
See help (`-h`) for more options.
#### In case you want to run Behavior Cloning (BC)
```bash
python -m baselines.gail.behavior_clone
```
See help (`-h`) for more options.
## Contributing
Bug reports and pull requests are welcome on GitHub at https://github.com/openai/baselines/pulls.
## Maintainers
- Yuan-Hong Liao, andrewliao11_at_gmail_dot_com
- Ryan Julian, ryanjulian_at_gmail_dot_com
## Others
Thanks to the open source:
- @openai/imitation
- @carpedm20/deep-rl-tensorflow

View File

View File

@@ -0,0 +1,87 @@
'''
Reference: https://github.com/openai/imitation
I follow the architecture from the official repository
'''
import tensorflow as tf
import numpy as np
from baselines.common.mpi_running_mean_std import RunningMeanStd
from baselines.common import tf_util as U
def logsigmoid(a):
'''Equivalent to tf.log(tf.sigmoid(a))'''
return -tf.nn.softplus(-a)
""" Reference: https://github.com/openai/imitation/blob/99fbccf3e060b6e6c739bdf209758620fcdefd3c/policyopt/thutil.py#L48-L51"""
def logit_bernoulli_entropy(logits):
ent = (1.-tf.nn.sigmoid(logits))*logits - logsigmoid(logits)
return ent
class TransitionClassifier(object):
def __init__(self, env, hidden_size, entcoeff=0.001, lr_rate=1e-3, scope="adversary"):
self.scope = scope
self.observation_shape = env.observation_space.shape
self.actions_shape = env.action_space.shape
self.input_shape = tuple([o+a for o, a in zip(self.observation_shape, self.actions_shape)])
self.num_actions = env.action_space.shape[0]
self.hidden_size = hidden_size
self.build_ph()
# Build grpah
generator_logits = self.build_graph(self.generator_obs_ph, self.generator_acs_ph, reuse=False)
expert_logits = self.build_graph(self.expert_obs_ph, self.expert_acs_ph, reuse=True)
# Build accuracy
generator_acc = tf.reduce_mean(tf.to_float(tf.nn.sigmoid(generator_logits) < 0.5))
expert_acc = tf.reduce_mean(tf.to_float(tf.nn.sigmoid(expert_logits) > 0.5))
# Build regression loss
# let x = logits, z = targets.
# z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
generator_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=generator_logits, labels=tf.zeros_like(generator_logits))
generator_loss = tf.reduce_mean(generator_loss)
expert_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=expert_logits, labels=tf.ones_like(expert_logits))
expert_loss = tf.reduce_mean(expert_loss)
# Build entropy loss
logits = tf.concat([generator_logits, expert_logits], 0)
entropy = tf.reduce_mean(logit_bernoulli_entropy(logits))
entropy_loss = -entcoeff*entropy
# Loss + Accuracy terms
self.losses = [generator_loss, expert_loss, entropy, entropy_loss, generator_acc, expert_acc]
self.loss_name = ["generator_loss", "expert_loss", "entropy", "entropy_loss", "generator_acc", "expert_acc"]
self.total_loss = generator_loss + expert_loss + entropy_loss
# Build Reward for policy
self.reward_op = -tf.log(1-tf.nn.sigmoid(generator_logits)+1e-8)
var_list = self.get_trainable_variables()
self.lossandgrad = U.function([self.generator_obs_ph, self.generator_acs_ph, self.expert_obs_ph, self.expert_acs_ph],
self.losses + [U.flatgrad(self.total_loss, var_list)])
def build_ph(self):
self.generator_obs_ph = tf.placeholder(tf.float32, (None, ) + self.observation_shape, name="observations_ph")
self.generator_acs_ph = tf.placeholder(tf.float32, (None, ) + self.actions_shape, name="actions_ph")
self.expert_obs_ph = tf.placeholder(tf.float32, (None, ) + self.observation_shape, name="expert_observations_ph")
self.expert_acs_ph = tf.placeholder(tf.float32, (None, ) + self.actions_shape, name="expert_actions_ph")
def build_graph(self, obs_ph, acs_ph, reuse=False):
with tf.variable_scope(self.scope):
if reuse:
tf.get_variable_scope().reuse_variables()
with tf.variable_scope("obfilter"):
self.obs_rms = RunningMeanStd(shape=self.observation_shape)
obs = (obs_ph - self.obs_rms.mean / self.obs_rms.std)
_input = tf.concat([obs, acs_ph], axis=1) # concatenate the two input -> form a transition
p_h1 = tf.contrib.layers.fully_connected(_input, self.hidden_size, activation_fn=tf.nn.tanh)
p_h2 = tf.contrib.layers.fully_connected(p_h1, self.hidden_size, activation_fn=tf.nn.tanh)
logits = tf.contrib.layers.fully_connected(p_h2, 1, activation_fn=tf.identity)
return logits
def get_trainable_variables(self):
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope)
def get_reward(self, obs, acs):
sess = tf.get_default_session()
if len(obs.shape) == 1:
obs = np.expand_dims(obs, 0)
if len(acs.shape) == 1:
acs = np.expand_dims(acs, 0)
feed_dict = {self.generator_obs_ph: obs, self.generator_acs_ph: acs}
reward = sess.run(self.reward_op, feed_dict)
return reward

View File

@@ -0,0 +1,124 @@
'''
The code is used to train BC imitator, or pretrained GAIL imitator
'''
import argparse
import tempfile
import os.path as osp
import gym
import logging
from tqdm import tqdm
import tensorflow as tf
from baselines.gail import mlp_policy
from baselines import bench
from baselines import logger
from baselines.common import set_global_seeds, tf_util as U
from baselines.common.misc_util import boolean_flag
from baselines.common.mpi_adam import MpiAdam
from baselines.gail.run_mujoco import runner
from baselines.gail.dataset.mujoco_dset import Mujoco_Dset
def argsparser():
parser = argparse.ArgumentParser("Tensorflow Implementation of Behavior Cloning")
parser.add_argument('--env_id', help='environment ID', default='Hopper-v1')
parser.add_argument('--seed', help='RNG seed', type=int, default=0)
parser.add_argument('--expert_path', type=str, default='data/deterministic.trpo.Hopper.0.00.npz')
parser.add_argument('--checkpoint_dir', help='the directory to save model', default='checkpoint')
parser.add_argument('--log_dir', help='the directory to save log file', default='log')
# Mujoco Dataset Configuration
parser.add_argument('--traj_limitation', type=int, default=-1)
# Network Configuration (Using MLP Policy)
parser.add_argument('--policy_hidden_size', type=int, default=100)
# for evaluatation
boolean_flag(parser, 'stochastic_policy', default=False, help='use stochastic/deterministic policy to evaluate')
boolean_flag(parser, 'save_sample', default=False, help='save the trajectories or not')
parser.add_argument('--BC_max_iter', help='Max iteration for training BC', type=int, default=1e5)
return parser.parse_args()
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4,
adam_epsilon=1e-5, optim_stepsize=3e-4,
ckpt_dir=None, log_dir=None, task_name=None,
verbose=False):
val_per_iter = int(max_iters/10)
ob_space = env.observation_space
ac_space = env.action_space
pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy
# placeholder
ob = U.get_placeholder_cached(name="ob")
ac = pi.pdtype.sample_placeholder([None])
stochastic = U.get_placeholder_cached(name="stochastic")
loss = tf.reduce_mean(tf.square(ac-pi.ac))
var_list = pi.get_trainable_variables()
adam = MpiAdam(var_list, epsilon=adam_epsilon)
lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)])
U.initialize()
adam.sync()
logger.log("Pretraining with Behavior Cloning...")
for iter_so_far in tqdm(range(int(max_iters))):
ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train')
train_loss, g = lossandgrad(ob_expert, ac_expert, True)
adam.update(g, optim_stepsize)
if verbose and iter_so_far % val_per_iter == 0:
ob_expert, ac_expert = dataset.get_next_batch(-1, 'val')
val_loss, _ = lossandgrad(ob_expert, ac_expert, True)
logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss))
if ckpt_dir is None:
savedir_fname = tempfile.TemporaryDirectory().name
else:
savedir_fname = osp.join(ckpt_dir, task_name)
U.save_state(savedir_fname, var_list=pi.get_variables())
return savedir_fname
def get_task_name(args):
task_name = 'BC'
task_name += '.{}'.format(args.env_id.split("-")[0])
task_name += '.traj_limitation_{}'.format(args.traj_limitation)
task_name += ".seed_{}".format(args.seed)
return task_name
def main(args):
U.make_session(num_cpu=1).__enter__()
set_global_seeds(args.seed)
env = gym.make(args.env_id)
def policy_fn(name, ob_space, ac_space, reuse=False):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
reuse=reuse, hid_size=args.policy_hidden_size, num_hid_layers=2)
env = bench.Monitor(env, logger.get_dir() and
osp.join(logger.get_dir(), "monitor.json"))
env.seed(args.seed)
gym.logger.setLevel(logging.WARN)
task_name = get_task_name(args)
args.checkpoint_dir = osp.join(args.checkpoint_dir, task_name)
args.log_dir = osp.join(args.log_dir, task_name)
dataset = Mujoco_Dset(expert_path=args.expert_path, traj_limitation=args.traj_limitation)
savedir_fname = learn(env,
policy_fn,
dataset,
max_iters=args.BC_max_iter,
ckpt_dir=args.checkpoint_dir,
log_dir=args.log_dir,
task_name=task_name,
verbose=True)
avg_len, avg_ret = runner(env,
policy_fn,
savedir_fname,
timesteps_per_batch=1024,
number_trajs=10,
stochastic_policy=args.stochastic_policy,
save=args.save_sample,
reuse=True)
if __name__ == '__main__':
args = argsparser()
main(args)

View File

View File

@@ -0,0 +1,110 @@
'''
Data structure of the input .npz:
the data is save in python dictionary format with keys: 'acs', 'ep_rets', 'rews', 'obs'
the values of each item is a list storing the expert trajectory sequentially
a transition can be: (data['obs'][t], data['acs'][t], data['obs'][t+1]) and get reward data['rews'][t]
'''
from baselines import logger
import numpy as np
class Dset(object):
def __init__(self, inputs, labels, randomize):
self.inputs = inputs
self.labels = labels
assert len(self.inputs) == len(self.labels)
self.randomize = randomize
self.num_pairs = len(inputs)
self.init_pointer()
def init_pointer(self):
self.pointer = 0
if self.randomize:
idx = np.arange(self.num_pairs)
np.random.shuffle(idx)
self.inputs = self.inputs[idx, :]
self.labels = self.labels[idx, :]
def get_next_batch(self, batch_size):
# if batch_size is negative -> return all
if batch_size < 0:
return self.inputs, self.labels
if self.pointer + batch_size >= self.num_pairs:
self.init_pointer()
end = self.pointer + batch_size
inputs = self.inputs[self.pointer:end, :]
labels = self.labels[self.pointer:end, :]
self.pointer = end
return inputs, labels
class Mujoco_Dset(object):
def __init__(self, expert_path, train_fraction=0.7, traj_limitation=-1, randomize=True):
traj_data = np.load(expert_path)
if traj_limitation < 0:
traj_limitation = len(traj_data['obs'])
obs = traj_data['obs'][:traj_limitation]
acs = traj_data['acs'][:traj_limitation]
# obs, acs: shape (N, L, ) + S where N = # episodes, L = episode length
# and S is the environment observation/action space.
# Flatten to (N * L, prod(S))
self.obs = np.reshape(obs, [-1, np.prod(obs.shape[2:])])
self.acs = np.reshape(acs, [-1, np.prod(acs.shape[2:])])
self.rets = traj_data['ep_rets'][:traj_limitation]
self.avg_ret = sum(self.rets)/len(self.rets)
self.std_ret = np.std(np.array(self.rets))
if len(self.acs) > 2:
self.acs = np.squeeze(self.acs)
assert len(self.obs) == len(self.acs)
self.num_traj = min(traj_limitation, len(traj_data['obs']))
self.num_transition = len(self.obs)
self.randomize = randomize
self.dset = Dset(self.obs, self.acs, self.randomize)
# for behavior cloning
self.train_set = Dset(self.obs[:int(self.num_transition*train_fraction), :],
self.acs[:int(self.num_transition*train_fraction), :],
self.randomize)
self.val_set = Dset(self.obs[int(self.num_transition*train_fraction):, :],
self.acs[int(self.num_transition*train_fraction):, :],
self.randomize)
self.log_info()
def log_info(self):
logger.log("Total trajectorues: %d" % self.num_traj)
logger.log("Total transitions: %d" % self.num_transition)
logger.log("Average returns: %f" % self.avg_ret)
logger.log("Std for returns: %f" % self.std_ret)
def get_next_batch(self, batch_size, split=None):
if split is None:
return self.dset.get_next_batch(batch_size)
elif split == 'train':
return self.train_set.get_next_batch(batch_size)
elif split == 'val':
return self.val_set.get_next_batch(batch_size)
else:
raise NotImplementedError
def plot(self):
import matplotlib.pyplot as plt
plt.hist(self.rets)
plt.savefig("histogram_rets.png")
plt.close()
def test(expert_path, traj_limitation, plot):
dset = Mujoco_Dset(expert_path, traj_limitation=traj_limitation)
if plot:
dset.plot()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--expert_path", type=str, default="../data/deterministic.trpo.Hopper.0.00.npz")
parser.add_argument("--traj_limitation", type=int, default=None)
parser.add_argument("--plot", type=bool, default=False)
args = parser.parse_args()
test(args.expert_path, args.traj_limitation, args.plot)

147
baselines/gail/gail-eval.py Normal file
View File

@@ -0,0 +1,147 @@
'''
This code is used to evalaute the imitators trained with different number of trajectories
and plot the results in the same figure for easy comparison.
'''
import argparse
import os
import glob
import gym
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from baselines.gail import run_mujoco
from baselines.gail import mlp_policy
from baselines.common import set_global_seeds, tf_util as U
from baselines.common.misc_util import boolean_flag
from baselines.gail.dataset.mujoco_dset import Mujoco_Dset
plt.style.use('ggplot')
CONFIG = {
'traj_limitation': [1, 5, 10, 50],
}
def load_dataset(expert_path):
dataset = Mujoco_Dset(expert_path=expert_path)
return dataset
def argsparser():
parser = argparse.ArgumentParser('Do evaluation')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--policy_hidden_size', type=int, default=100)
parser.add_argument('--env', type=str, choices=['Hopper', 'Walker2d', 'HalfCheetah',
'Humanoid', 'HumanoidStandup'])
boolean_flag(parser, 'stochastic_policy', default=False, help='use stochastic/deterministic policy to evaluate')
return parser.parse_args()
def evaluate_env(env_name, seed, policy_hidden_size, stochastic, reuse, prefix):
def get_checkpoint_dir(checkpoint_list, limit, prefix):
for checkpoint in checkpoint_list:
if ('limitation_'+str(limit) in checkpoint) and (prefix in checkpoint):
return checkpoint
return None
def policy_fn(name, ob_space, ac_space, reuse=False):
return mlp_policy.MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
reuse=reuse, hid_size=policy_hidden_size, num_hid_layers=2)
data_path = os.path.join('data', 'deterministic.trpo.' + env_name + '.0.00.npz')
dataset = load_dataset(data_path)
checkpoint_list = glob.glob(os.path.join('checkpoint', '*' + env_name + ".*"))
log = {
'traj_limitation': [],
'upper_bound': [],
'avg_ret': [],
'avg_len': [],
'normalized_ret': []
}
for i, limit in enumerate(CONFIG['traj_limitation']):
# Do one evaluation
upper_bound = sum(dataset.rets[:limit])/limit
checkpoint_dir = get_checkpoint_dir(checkpoint_list, limit, prefix=prefix)
checkpoint_path = tf.train.latest_checkpoint(checkpoint_dir)
env = gym.make(env_name + '-v1')
env.seed(seed)
print('Trajectory limitation: {}, Load checkpoint: {}, '.format(limit, checkpoint_path))
avg_len, avg_ret = run_mujoco.runner(env,
policy_fn,
checkpoint_path,
timesteps_per_batch=1024,
number_trajs=10,
stochastic_policy=stochastic,
reuse=((i != 0) or reuse))
normalized_ret = avg_ret/upper_bound
print('Upper bound: {}, evaluation returns: {}, normalized scores: {}'.format(
upper_bound, avg_ret, normalized_ret))
log['traj_limitation'].append(limit)
log['upper_bound'].append(upper_bound)
log['avg_ret'].append(avg_ret)
log['avg_len'].append(avg_len)
log['normalized_ret'].append(normalized_ret)
env.close()
return log
def plot(env_name, bc_log, gail_log, stochastic):
upper_bound = bc_log['upper_bound']
bc_avg_ret = bc_log['avg_ret']
gail_avg_ret = gail_log['avg_ret']
plt.plot(CONFIG['traj_limitation'], upper_bound)
plt.plot(CONFIG['traj_limitation'], bc_avg_ret)
plt.plot(CONFIG['traj_limitation'], gail_avg_ret)
plt.xlabel('Number of expert trajectories')
plt.ylabel('Accumulated reward')
plt.title('{} unnormalized scores'.format(env_name))
plt.legend(['expert', 'bc-imitator', 'gail-imitator'], loc='lower right')
plt.grid(b=True, which='major', color='gray', linestyle='--')
if stochastic:
title_name = 'result/{}-unnormalized-stochastic-scores.png'.format(env_name)
else:
title_name = 'result/{}-unnormalized-deterministic-scores.png'.format(env_name)
plt.savefig(title_name)
plt.close()
bc_normalized_ret = bc_log['normalized_ret']
gail_normalized_ret = gail_log['normalized_ret']
plt.plot(CONFIG['traj_limitation'], np.ones(len(CONFIG['traj_limitation'])))
plt.plot(CONFIG['traj_limitation'], bc_normalized_ret)
plt.plot(CONFIG['traj_limitation'], gail_normalized_ret)
plt.xlabel('Number of expert trajectories')
plt.ylabel('Normalized performance')
plt.title('{} normalized scores'.format(env_name))
plt.legend(['expert', 'bc-imitator', 'gail-imitator'], loc='lower right')
plt.grid(b=True, which='major', color='gray', linestyle='--')
if stochastic:
title_name = 'result/{}-normalized-stochastic-scores.png'.format(env_name)
else:
title_name = 'result/{}-normalized-deterministic-scores.png'.format(env_name)
plt.ylim(0, 1.6)
plt.savefig(title_name)
plt.close()
def main(args):
U.make_session(num_cpu=1).__enter__()
set_global_seeds(args.seed)
print('Evaluating {}'.format(args.env))
bc_log = evaluate_env(args.env, args.seed, args.policy_hidden_size,
args.stochastic_policy, False, 'BC')
print('Evaluation for {}'.format(args.env))
print(bc_log)
gail_log = evaluate_env(args.env, args.seed, args.policy_hidden_size,
args.stochastic_policy, True, 'gail')
print('Evaluation for {}'.format(args.env))
print(gail_log)
plot(args.env, bc_log, gail_log, args.stochastic_policy)
if __name__ == '__main__':
args = argsparser()
main(args)

View File

@@ -0,0 +1,75 @@
'''
from baselines/ppo1/mlp_policy.py and add simple modification
(1) add reuse argument
(2) cache the `stochastic` placeholder
'''
import tensorflow as tf
import gym
import baselines.common.tf_util as U
from baselines.common.mpi_running_mean_std import RunningMeanStd
from baselines.common.distributions import make_pdtype
from baselines.acktr.utils import dense
class MlpPolicy(object):
recurrent = False
def __init__(self, name, reuse=False, *args, **kwargs):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
self._init(*args, **kwargs)
self.scope = tf.get_variable_scope().name
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True):
assert isinstance(ob_space, gym.spaces.Box)
self.pdtype = pdtype = make_pdtype(ac_space)
sequence_length = None
ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape))
with tf.variable_scope("obfilter"):
self.ob_rms = RunningMeanStd(shape=ob_space.shape)
obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0)
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(dense(last_out, hid_size, "vffc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
self.vpred = dense(last_out, 1, "vffinal", weight_init=U.normc_initializer(1.0))[:, 0]
last_out = obz
for i in range(num_hid_layers):
last_out = tf.nn.tanh(dense(last_out, hid_size, "polfc%i" % (i+1), weight_init=U.normc_initializer(1.0)))
if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box):
mean = dense(last_out, pdtype.param_shape()[0]//2, "polfinal", U.normc_initializer(0.01))
logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer())
pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1)
else:
pdparam = dense(last_out, pdtype.param_shape()[0], "polfinal", U.normc_initializer(0.01))
self.pd = pdtype.pdfromflat(pdparam)
self.state_in = []
self.state_out = []
# change for BC
stochastic = U.get_placeholder(name="stochastic", dtype=tf.bool, shape=())
ac = U.switch(stochastic, self.pd.sample(), self.pd.mode())
self.ac = ac
self._act = U.function([stochastic, ob], [ac, self.vpred])
def act(self, stochastic, ob):
ac1, vpred1 = self._act(stochastic, ob[None])
return ac1[0], vpred1[0]
def get_variables(self):
return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, self.scope)
def get_trainable_variables(self):
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope)
def get_initial_state(self):
return []

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

View File

@@ -0,0 +1,53 @@
# Results of GAIL/BC on Mujoco
Here's the extensive experimental results of applying GAIL/BC on Mujoco environments, including
Hopper-v1, Walker2d-v1, HalfCheetah-v1, Humanoid-v1, HumanoidStandup-v1. Every imitator is evaluated with seed to be 0.
## Results
### Training through iterations
- Hoppers-v1
<img src='hopper-training.png'>
- HalfCheetah-v1
<img src='halfcheetah-training.png'>
- Walker2d-v1
<img src='walker2d-training.png'>
- Humanoid-v1
<img src='humanoid-training.png'>
- HumanoidStandup-v1
<img src='humanoidstandup-training.png'>
For details (e.g., adversarial loss, discriminator accuracy, etc.) about GAIL training, please see [here](https://drive.google.com/drive/folders/1nnU8dqAV9i37-_5_vWIspyFUJFQLCsDD?usp=sharing)
### Determinstic Polciy (Set std=0)
| | Un-normalized | Normalized |
|---|---|---|
| Hopper-v1 | <img src='Hopper-unnormalized-deterministic-scores.png'> | <img src='Hopper-normalized-deterministic-scores.png'> |
| HalfCheetah-v1 | <img src='HalfCheetah-unnormalized-deterministic-scores.png'> | <img src='HalfCheetah-normalized-deterministic-scores.png'> |
| Walker2d-v1 | <img src='Walker2d-unnormalized-deterministic-scores.png'> | <img src='Walker2d-normalized-deterministic-scores.png'> |
| Humanoid-v1 | <img src='Humanoid-unnormalized-deterministic-scores.png'> | <img src='Humanoid-normalized-deterministic-scores.png'> |
| HumanoidStandup-v1 | <img src='HumanoidStandup-unnormalized-deterministic-scores.png'> | <img src='HumanoidStandup-normalized-deterministic-scores.png'> |
### Stochatic Policy
| | Un-normalized | Normalized |
|---|---|---|
| Hopper-v1 | <img src='Hopper-unnormalized-stochastic-scores.png'> | <img src='Hopper-normalized-stochastic-scores.png'> |
| HalfCheetah-v1 | <img src='HalfCheetah-unnormalized-stochastic-scores.png'> | <img src='HalfCheetah-normalized-stochastic-scores.png'> |
| Walker2d-v1 | <img src='Walker2d-unnormalized-stochastic-scores.png'> | <img src='Walker2d-normalized-stochastic-scores.png'> |
| Humanoid-v1 | <img src='Humanoid-unnormalized-stochastic-scores.png'> | <img src='Humanoid-normalized-stochastic-scores.png'> |
| HumanoidStandup-v1 | <img src='HumanoidStandup-unnormalized-stochastic-scores.png'> | <img src='HumanoidStandup-normalized-stochastic-scores.png'> |
### details about GAIL imitator
For all environments, the
imitator is trained with 1, 5, 10, 50 trajectories, where each trajectory contains at most
1024 transitions, and seed 0, 1, 2, 3, respectively.
### details about the BC imitators
All BC imitators are trained with seed 0.

Binary file not shown.

After

Width:  |  Height:  |  Size: 504 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 534 KiB

Some files were not shown because too many files have changed in this diff Show More