Compare commits

..

2 Commits

Author SHA1 Message Date
Peter Zhokhov
dbcc4e0252 lstm network builders using tf lstm 2018-08-10 14:23:45 -07:00
Peter Zhokhov
217b111c88 merged refactor 2018-08-10 14:14:46 -07:00
18 changed files with 93 additions and 18396 deletions

View File

@@ -1 +1 @@
ppo2

View File

@@ -112,6 +112,10 @@ This should get to the mean reward per episode about 5k. To load and visualize t
*NOTE:* At the moment Mujoco training uses VecNormalize wrapper for the environment which is not being saved correctly; so loading the models trained on Mujoco will not work well if the environment is recreated. If necessary, you can work around that by replacing RunningMeanStd by TfRunningMeanStd in [baselines/common/vec_env/vec_normalize.py](baselines/common/vec_env/vec_normalize.py#L12). This way, mean and std of environment normalizing wrapper will be saved in tensorflow variables and included in the model file; however, training is slower that way - hence not including it by default
## Subpackages
- [A2C](baselines/a2c)
@@ -121,19 +125,10 @@ This should get to the mean reward per episode about 5k. To load and visualize t
- [DQN](baselines/deepq)
- [GAIL](baselines/gail)
- [HER](baselines/her)
- [PPO1](baselines/ppo1) (obsolete version, left here temporarily)
- [PPO2](baselines/ppo2)
- [PPO1](baselines/ppo1) (Multi-CPU using MPI)
- [PPO2](baselines/ppo2) (Optimized for GPU)
- [TRPO](baselines/trpo_mpi)
## Benchmarks
Results of benchmarks on Mujoco (1M timesteps) and Atari (10M timesteps) are available
[here for Mujoco](https://htmlpreview.github.com/?https://github.com/openai/baselines/blob/master/benchmarks_mujoco1M.htm)
and
[here for Atari](https://htmlpreview.github.com/?https://github.com/openai/baselines/blob/master/benchmarks_atari10M.htm)
respectively. Note that these results may be not on the latest version of the code, particular commit hash with which results were obtained is specified on the benchmarks page.
To cite this repository in publications:
@misc{baselines,
@@ -144,4 +139,3 @@ To cite this repository in publications:
journal = {GitHub repository},
howpublished = {\url{https://github.com/openai/baselines}},
}

View File

@@ -156,7 +156,7 @@ class FrameStack(gym.Wrapper):
self.k = k
self.frames = deque([], maxlen=k)
shp = env.observation_space.shape
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=env.observation_space.dtype)
self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=np.uint8)
def reset(self):
ob = self.env.reset()
@@ -176,7 +176,6 @@ class FrameStack(gym.Wrapper):
class ScaledFloatFrame(gym.ObservationWrapper):
def __init__(self, env):
gym.ObservationWrapper.__init__(self, env)
self.observation_space = gym.spaces.Box(low=0, high=1, shape=env.observation_space.shape, dtype=np.float32)
def observation(self, observation):
# careful! This undoes the memory optimization, use

View File

@@ -138,7 +138,7 @@ def conv_only(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)], **conv_kwargs):
'''
def network_fn(X):
out = tf.cast(X, tf.float32) / 255.
out = X
with tf.variable_scope("convnet"):
for num_outputs, kernel_size, stride in convs:
out = layers.convolution2d(out,

View File

@@ -6,7 +6,8 @@ from baselines.run import get_learn_function
common_kwargs = dict(
seed=0,
total_timesteps=50000,
total_timesteps=20000,
nlstm=64
)
learn_kwargs = {
@@ -19,7 +20,7 @@ learn_kwargs = {
alg_list = learn_kwargs.keys()
rnn_list = ['lstm']
rnn_list = ['lstm', 'tflstm', 'tflstm_static']
@pytest.mark.slow
@pytest.mark.parametrize("alg", alg_list)
@@ -41,11 +42,11 @@ def test_fixed_sequence(alg, rnn):
**kwargs
)
simple_test(env_fn, learn, 0.7)
simple_test(env_fn, learn, 0.3)
if __name__ == '__main__':
test_fixed_sequence('ppo2', 'lstm')
test_fixed_sequence('ppo2', 'tflstm')

View File

@@ -2,6 +2,7 @@ import tensorflow as tf
import numpy as np
from gym.spaces import np_random
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.bench.monitor import Monitor
N_TRIALS = 10000
N_EPISODES = 100
@@ -10,7 +11,7 @@ def simple_test(env_fn, learn_fn, min_reward_fraction, n_trials=N_TRIALS):
np.random.seed(0)
np_random.seed(0)
env = DummyVecEnv([env_fn])
env = DummyVecEnv([lambda: Monitor(env_fn(), None, allow_early_resets=True)])
with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(allow_soft_placement=True)).as_default():

View File

@@ -1,34 +1,28 @@
from abc import ABC, abstractmethod
from baselines import logger
class AlreadySteppingError(Exception):
"""
Raised when an asynchronous step is running while
step_async() is called again.
"""
def __init__(self):
msg = 'already running an async step'
Exception.__init__(self, msg)
class NotSteppingError(Exception):
"""
Raised when an asynchronous step is not running but
step_wait() is called.
"""
def __init__(self):
msg = 'not running an async step'
Exception.__init__(self, msg)
class VecEnv(ABC):
"""
An abstract asynchronous, vectorized environment.
"""
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.observation_space = observation_space
@@ -38,7 +32,7 @@ class VecEnv(ABC):
def reset(self):
"""
Reset all the environments and return an array of
observations, or a dict of observation arrays.
observations, or a tuple of observation arrays.
If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
@@ -64,7 +58,7 @@ class VecEnv(ABC):
Wait for the step taken with step_async().
Returns (obs, rews, dones, infos):
- obs: an array of observations, or a dict of
- obs: an array of observations, or a tuple of
arrays of observations.
- rews: an array of rewards
- dones: an array of "episode done" booleans
@@ -80,16 +74,11 @@ class VecEnv(ABC):
pass
def step(self, actions):
"""
Step the environments synchronously.
This is available for backwards compatibility.
"""
self.step_async(actions)
return self.step_wait()
def render(self, mode='human'):
logger.warn('Render not defined for %s' % self)
logger.warn('Render not defined for %s'%self)
@property
def unwrapped(self):
@@ -98,19 +87,13 @@ class VecEnv(ABC):
else:
return self
class VecEnvWrapper(VecEnv):
"""
An environment wrapper that applies to an entire batch
of environments at once.
"""
def __init__(self, venv, observation_space=None, action_space=None):
self.venv = venv
VecEnv.__init__(self,
num_envs=venv.num_envs,
observation_space=observation_space or venv.observation_space,
action_space=action_space or venv.action_space)
VecEnv.__init__(self,
num_envs=venv.num_envs,
observation_space=observation_space or venv.observation_space,
action_space=action_space or venv.action_space)
def step_async(self, actions):
self.venv.step_async(actions)
@@ -129,19 +112,15 @@ class VecEnvWrapper(VecEnv):
def render(self):
self.venv.render()
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)

View File

@@ -1,40 +1,59 @@
import numpy as np
from gym import spaces
from collections import OrderedDict
from . import VecEnv
from .util import copy_obs_dict, dict_to_obs, obs_space_info
class DummyVecEnv(VecEnv):
"""
A VecEnv that wraps raw gym.Envs.
This can be used when an algorithm requires a VecEnv
but you want to use a vanilla gym.Env instance.
It is also useful for avoiding IPC overhead when you
don't need to run environments in parallel.
"""
def __init__(self, env_fns):
self.envs = [fn() for fn in env_fns]
env = self.envs[0]
VecEnv.__init__(self, len(env_fns), env.observation_space, env.action_space)
shapes, dtypes = {}, {}
self.keys = []
obs_space = env.observation_space
self.keys, shapes, dtypes = obs_space_info(obs_space)
self.buf_obs = {k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys}
if isinstance(obs_space, spaces.Dict):
assert isinstance(obs_space.spaces, OrderedDict)
subspaces = obs_space.spaces
else:
subspaces = {None: obs_space}
for key, box in subspaces.items():
shapes[key] = box.shape
dtypes[key] = box.dtype
self.keys.append(key)
self.buf_obs = { k: np.zeros((self.num_envs,) + tuple(shapes[k]), dtype=dtypes[k]) for k in self.keys }
self.buf_dones = np.zeros((self.num_envs,), dtype=np.bool)
self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32)
self.buf_rews = np.zeros((self.num_envs,), dtype=np.float32)
self.buf_infos = [{} for _ in range(self.num_envs)]
self.actions = None
def step_async(self, actions):
self.actions = actions
listify = True
try:
if len(actions) == self.num_envs:
listify = False
except TypeError:
pass
if not listify:
self.actions = actions
else:
assert self.num_envs == 1, "actions {} is either not a list or has a wrong size - cannot match to {} environments".format(actions, self.num_envs)
self.actions = [actions]
def step_wait(self):
for e in range(self.num_envs):
obs, self.buf_rews[e], self.buf_dones[e], self.buf_infos[e] = self.envs[e].step(self.actions[e])
action = self.actions[e]
if isinstance(self.envs[e].action_space, spaces.Discrete):
action = int(action)
obs, self.buf_rews[e], self.buf_dones[e], self.buf_infos[e] = self.envs[e].step(action)
if self.buf_dones[e]:
obs = self.envs[e].reset()
self._save_obs(e, obs)
return (self._obs_from_buf(), np.copy(self.buf_rews), np.copy(self.buf_dones),
return (np.copy(self._obs_from_buf()), np.copy(self.buf_rews), np.copy(self.buf_dones),
self.buf_infos.copy())
def reset(self):
@@ -44,8 +63,7 @@ class DummyVecEnv(VecEnv):
return self._obs_from_buf()
def close(self):
for e in self.envs:
e.close()
return
def render(self, mode='human'):
return [e.render(mode=mode) for e in self.envs]
@@ -58,4 +76,7 @@ class DummyVecEnv(VecEnv):
self.buf_obs[k][e] = obs[k]
def _obs_from_buf(self):
return dict_to_obs(copy_obs_dict(self.buf_obs))
if self.keys==[None]:
return self.buf_obs[None]
else:
return self.buf_obs

View File

@@ -1,146 +0,0 @@
"""
An interface for asynchronous vectorized environments.
"""
from multiprocessing import Pipe, Array, Process
import numpy as np
from . import VecEnv, CloudpickleWrapper
import ctypes
from baselines import logger
from baselines.common.tile_images import tile_images
from .util import dict_to_obs, obs_space_info, obs_to_dict
_NP_TO_CT = {np.float32: ctypes.c_float,
np.int32: ctypes.c_int32,
np.int8: ctypes.c_int8,
np.uint8: ctypes.c_char,
np.bool: ctypes.c_bool}
class ShmemVecEnv(VecEnv):
"""
An AsyncEnv that uses multiprocessing to run multiple
environments in parallel.
"""
def __init__(self, env_fns, spaces=None):
"""
If you don't specify observation_space, we'll have to create a dummy
environment to get it.
"""
if spaces:
observation_space, action_space = spaces
else:
logger.log('Creating dummy env object to get spaces')
with logger.scoped_configure(format_strs=[]):
dummy = env_fns[0]()
observation_space, action_space = dummy.observation_space, dummy.action_space
dummy.close()
del dummy
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
self.obs_keys, self.obs_shapes, self.obs_dtypes = obs_space_info(observation_space)
self.obs_bufs = [
{k: Array(_NP_TO_CT[self.obs_dtypes[k].type], int(np.prod(self.obs_shapes[k]))) for k in self.obs_keys}
for _ in env_fns]
self.parent_pipes = []
self.procs = []
for env_fn, obs_buf in zip(env_fns, self.obs_bufs):
wrapped_fn = CloudpickleWrapper(env_fn)
parent_pipe, child_pipe = Pipe()
proc = Process(target=_subproc_worker,
args=(child_pipe, parent_pipe, wrapped_fn, obs_buf, self.obs_shapes, self.obs_dtypes, self.obs_keys))
proc.daemon = True
self.procs.append(proc)
self.parent_pipes.append(parent_pipe)
proc.start()
child_pipe.close()
self.waiting_step = False
def reset(self):
if self.waiting_step:
logger.warn('Called reset() while waiting for the step to complete')
self.step_wait()
for pipe in self.parent_pipes:
pipe.send(('reset', None))
return self._decode_obses([pipe.recv() for pipe in self.parent_pipes])
def step_async(self, actions):
assert len(actions) == len(self.parent_pipes)
for pipe, act in zip(self.parent_pipes, actions):
pipe.send(('step', act))
def step_wait(self):
outs = [pipe.recv() for pipe in self.parent_pipes]
obs, rews, dones, infos = zip(*outs)
return self._decode_obses(obs), np.array(rews), np.array(dones), infos
def close(self):
if self.waiting_step:
self.step_wait()
for pipe in self.parent_pipes:
pipe.send(('close', None))
for pipe in self.parent_pipes:
pipe.recv()
pipe.close()
for proc in self.procs:
proc.join()
def render(self, mode='human'):
for pipe in self.parent_pipes:
pipe.send(('render', None))
imgs = [pipe.recv() for pipe in self.parent_pipes]
bigimg = tile_images(imgs)
if mode == 'human':
import cv2
cv2.imshow('vecenv', bigimg[:, :, ::-1])
cv2.waitKey(1)
elif mode == 'rgb_array':
return bigimg
else:
raise NotImplementedError
def _decode_obses(self, obs):
result = {}
for k in self.obs_keys:
bufs = [b[k] for b in self.obs_bufs]
o = [np.frombuffer(b.get_obj(), dtype=self.obs_dtypes[k]).reshape(self.obs_shapes[k]) for b in bufs]
result[k] = np.array(o)
return dict_to_obs(result)
def _subproc_worker(pipe, parent_pipe, env_fn_wrapper, obs_bufs, obs_shapes, obs_dtypes, keys):
"""
Control a single environment instance using IPC and
shared memory.
"""
def _write_obs(maybe_dict_obs):
flatdict = obs_to_dict(maybe_dict_obs)
for k in keys:
dst = obs_bufs[k].get_obj()
dst_np = np.frombuffer(dst, dtype=obs_dtypes[k]).reshape(obs_shapes[k]) # pylint: disable=W0212
np.copyto(dst_np, flatdict[k])
env = env_fn_wrapper.x()
parent_pipe.close()
try:
while True:
cmd, data = pipe.recv()
if cmd == 'reset':
pipe.send(_write_obs(env.reset()))
elif cmd == 'step':
obs, reward, done, info = env.step(data)
if done:
obs = env.reset()
pipe.send((_write_obs(obs), reward, done, info))
elif cmd == 'render':
pipe.send(env.render(mode='rgb_array'))
elif cmd == 'close':
pipe.send(None)
break
else:
raise RuntimeError('Got unrecognized cmd %s' % cmd)
except KeyboardInterrupt:
print('ShmemVecEnv worker: got KeyboardInterrupt')
finally:
env.close()

View File

@@ -1,6 +1,6 @@
import numpy as np
from multiprocessing import Process, Pipe
from . import VecEnv, CloudpickleWrapper
from baselines.common.vec_env import VecEnv, CloudpickleWrapper
from baselines.common.tile_images import tile_images
@@ -32,7 +32,6 @@ def worker(remote, parent_remote, env_fn_wrapper):
finally:
env.close()
class SubprocVecEnv(VecEnv):
def __init__(self, env_fns, spaces=None):
"""
@@ -43,9 +42,9 @@ class SubprocVecEnv(VecEnv):
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
p.daemon = True # if the main process crashes, we should not cause things to hang
p.daemon = True # if the main process crashes, we should not cause things to hang
p.start()
for remote in self.work_remotes:
remote.close()
@@ -79,7 +78,7 @@ class SubprocVecEnv(VecEnv):
if self.closed:
return
if self.waiting:
for remote in self.remotes:
for remote in self.remotes:
remote.recv()
for remote in self.remotes:
remote.send(('close', None))
@@ -94,9 +93,9 @@ class SubprocVecEnv(VecEnv):
bigimg = tile_images(imgs)
if mode == 'human':
import cv2
cv2.imshow('vecenv', bigimg[:, :, ::-1])
cv2.imshow('vecenv', bigimg[:,:,::-1])
cv2.waitKey(1)
elif mode == 'rgb_array':
return bigimg
else:
raise NotImplementedError
raise NotImplementedError

View File

@@ -1,85 +0,0 @@
"""
Tests for asynchronous vectorized environments.
"""
import gym
import numpy as np
import pytest
from .dummy_vec_env import DummyVecEnv
from .shmem_vec_env import ShmemVecEnv
from .subproc_vec_env import SubprocVecEnv
@pytest.mark.parametrize('klass', (ShmemVecEnv, SubprocVecEnv))
@pytest.mark.parametrize('dtype', ('uint8', 'float32'))
def test_vec_env(klass, dtype): # pylint: disable=R0914
"""
Test that a vectorized environment is equivalent to
DummyVecEnv, since DummyVecEnv is less likely to be
error prone.
"""
num_envs = 3
num_steps = 100
shape = (3, 8)
def make_fn(seed):
"""
Get an environment constructor with a seed.
"""
return lambda: _SimpleEnv(seed, shape, dtype)
fns = [make_fn(i) for i in range(num_envs)]
env1 = DummyVecEnv(fns)
env2 = klass(fns)
try:
obs1, obs2 = env1.reset(), env2.reset()
assert np.array(obs1).shape == np.array(obs2).shape
assert np.allclose(obs1, obs2)
np.random.seed(1337)
for _ in range(num_steps):
joint_shape = (len(fns),) + shape
actions = np.array(np.random.randint(0, 0x100, size=joint_shape),
dtype=dtype)
for env in [env1, env2]:
env.step_async(actions)
outs1 = env1.step_wait()
outs2 = env2.step_wait()
for out1, out2 in zip(outs1[:3], outs2[:3]):
assert np.array(out1).shape == np.array(out2).shape
assert np.allclose(out1, out2)
assert list(outs1[3]) == list(outs2[3])
finally:
env1.close()
env2.close()
class _SimpleEnv(gym.Env):
"""
An environment with a pre-determined observation space
and RNG seed.
"""
def __init__(self, seed, shape, dtype):
np.random.seed(seed)
self._dtype = dtype
self._start_obs = np.array(np.random.randint(0, 0x100, size=shape),
dtype=dtype)
self._max_steps = seed + 1
self._cur_obs = None
self._cur_step = 0
self.action_space = gym.spaces.Box(low=0, high=100, shape=shape, dtype=dtype)
self.observation_space = self.action_space
def step(self, action):
self._cur_obs += np.array(action, dtype=self._dtype)
self._cur_step += 1
done = self._cur_step >= self._max_steps
reward = self._cur_step / self._max_steps
return self._cur_obs, reward, done, {'foo': 'bar' + str(reward)}
def reset(self):
self._cur_obs = self._start_obs
self._cur_step = 0
return self._cur_obs
def render(self, mode=None):
raise NotImplementedError

View File

@@ -1,59 +0,0 @@
"""
Helpers for dealing with vectorized environments.
"""
from collections import OrderedDict
import gym
import numpy as np
def copy_obs_dict(obs):
"""
Deep-copy an observation dict.
"""
return {k: np.copy(v) for k, v in obs.items()}
def dict_to_obs(obs_dict):
"""
Convert an observation dict into a raw array if the
original observation space was not a Dict space.
"""
if set(obs_dict.keys()) == {None}:
return obs_dict[None]
return obs_dict
def obs_space_info(obs_space):
"""
Get dict-structured information about a gym.Space.
Returns:
A tuple (keys, shapes, dtypes):
keys: a list of dict keys.
shapes: a dict mapping keys to shapes.
dtypes: a dict mapping keys to dtypes.
"""
if isinstance(obs_space, gym.spaces.Dict):
assert isinstance(obs_space.spaces, OrderedDict)
subspaces = obs_space.spaces
else:
subspaces = {None: obs_space}
keys = []
shapes = {}
dtypes = {}
for key, box in subspaces.items():
keys.append(key)
shapes[key] = box.shape
dtypes[key] = box.dtype
return keys, shapes, dtypes
def obs_to_dict(obs):
"""
Convert an observation into a dict.
"""
if isinstance(obs, dict):
return obs
return {None: obs}

View File

@@ -1,16 +1,18 @@
from . import VecEnvWrapper
from baselines.common.vec_env import VecEnvWrapper
import numpy as np
from gym import spaces
class VecFrameStack(VecEnvWrapper):
"""
Vectorized environment base class
"""
def __init__(self, venv, nstack):
self.venv = venv
self.nstack = nstack
wos = venv.observation_space # wrapped ob space
wos = venv.observation_space # wrapped ob space
low = np.repeat(wos.low, self.nstack, axis=-1)
high = np.repeat(wos.high, self.nstack, axis=-1)
self.stackedobs = np.zeros((venv.num_envs,) + low.shape, low.dtype)
self.stackedobs = np.zeros((venv.num_envs,)+low.shape, low.dtype)
observation_space = spaces.Box(low=low, high=high, dtype=venv.observation_space.dtype)
VecEnvWrapper.__init__(self, venv, observation_space=observation_space)
@@ -24,6 +26,9 @@ class VecFrameStack(VecEnvWrapper):
return self.stackedobs, rews, news, infos
def reset(self):
"""
Reset all environments
"""
obs = self.venv.reset()
self.stackedobs[...] = 0
self.stackedobs[..., -obs.shape[-1]:] = obs

View File

@@ -1,29 +0,0 @@
from . import VecEnvWrapper
import numpy as np
class VecMonitor(VecEnvWrapper):
def __init__(self, venv):
VecEnvWrapper.__init__(self, venv)
self.eprets = None
self.eplens = None
def reset(self):
obs = self.venv.reset()
self.eprets = np.zeros(self.num_envs, 'f')
self.eplens = np.zeros(self.num_envs, 'i')
return obs
def step_wait(self):
obs, rews, dones, infos = self.venv.step_wait()
self.eprets += rews
self.eplens += 1
newinfos = []
for (i, (done, ret, eplen, info)) in enumerate(zip(dones, self.eprets, self.eplens, infos)):
info = info.copy()
if done:
info['episode'] = {'r': ret, 'l': eplen}
self.eprets[i] = 0
self.eplens[i] = 0
newinfos.append(info)
return obs, rews, dones, newinfos

View File

@@ -1,18 +1,17 @@
from . import VecEnvWrapper
from baselines.common.vec_env import VecEnvWrapper
from baselines.common.running_mean_std import RunningMeanStd
import numpy as np
class VecNormalize(VecEnvWrapper):
"""
A vectorized wrapper that normalizes the observations
and returns from an environment.
Vectorized environment base class
"""
def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8):
VecEnvWrapper.__init__(self, venv)
self.ob_rms = RunningMeanStd(shape=self.observation_space.shape) if ob else None
self.ret_rms = RunningMeanStd(shape=()) if ret else None
#self.ob_rms = TfRunningMeanStd(shape=self.observation_space.shape, scope='observation_running_mean_std') if ob else None
#self.ret_rms = TfRunningMeanStd(shape=(), scope='return_running_mean_std') if ret else None
self.clipob = clipob
self.cliprew = cliprew
self.ret = np.zeros(self.num_envs)
@@ -20,6 +19,12 @@ class VecNormalize(VecEnvWrapper):
self.epsilon = epsilon
def step_wait(self):
"""
Apply sequence of actions to sequence of environments
actions -> (observations, rewards, news)
where 'news' is a boolean vector indicating whether each element is new.
"""
obs, rews, news, infos = self.venv.step_wait()
self.ret = self.ret * self.gamma + rews
obs = self._obfilt(obs)
@@ -37,5 +42,8 @@ class VecNormalize(VecEnvWrapper):
return obs
def reset(self):
"""
Reset all environments
"""
obs = self.venv.reset()
return self._obfilt(obs)

View File

@@ -32,7 +32,7 @@ In particular notice that once `deepq.learn` finishes training it returns `act`
- [baselines/deepq/experiments/custom_cartpole.py](experiments/custom_cartpole.py) - Cartpole training with more fine grained control over the internals of DQN algorithm.
- [baselines/deepq/experiments/run_atari.py](experiments/run_atari.py) - more robust setup for training at scale.
- [baselines/deepq/experiments/atari/train.py](experiments/atari/train.py) - more robust setup for training at scale.
##### Download a pretrained Atari agent

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff