2018-09-30 23:01:58 +01:00
---
id: 5900f3e81000cf542c50fefb
title: 'Problem 124: Ordered radicals'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301751
2021-01-13 03:31:00 +01:00
dashedName: problem-124-ordered-radicals
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2021-11-30 01:27:41 +05:30
The radical of $n$, $rad(n)$, is the product of the distinct prime factors of $n$. For example, $504 = 2^3 × 3^2 × 7$, so $rad(504) = 2 × 3 × 7 = 42$.
2021-07-16 21:38:37 +02:00
If we calculate $rad(n)$ for $1 ≤ n ≤ 10$, then sort them on $rad(n)$, and sorting on $n$ if the radical values are equal, we get:
< div style = "text-align: center;" >
< table cellpadding = "2" cellspacing = "0" border = "0" align = "center" >
< tbody >
< tr >
< td colspan = "2" > $Unsorted$< / td >
< td > < / td >
< td colspan = "3" > $Sorted$< / td >
< / tr >
< tr >
< td > $n$< / td >
< td > $rad(n)$< / td >
< td > < / td >
< td > $n$< / td >
< td > $rad(n)$< / td >
< td > $k$< / td >
< / tr >
< tr >
< td > 1< / td >
< td > 1< / td >
< td > < / td >
< td > 1< / td >
< td > 1< / td >
< td > 1< / td >
< / tr >
< tr >
< td > 2< / td >
< td > 2< / td >
< td > < / td >
< td > 2< / td >
< td > 2< / td >
< td > 2< / td >
< / tr >
< tr >
< td > 3< / td >
< td > 3< / td >
< td > < / td >
< td > 4< / td >
< td > 2< / td >
< td > 3< / td >
< / tr >
< tr >
< td > 4< / td >
< td > 2< / td >
< td > < / td >
< td > 8< / td >
< td > 2< / td >
< td > 4< / td >
< / tr >
< tr >
< td > 5< / td >
< td > 5< / td >
< td > < / td >
< td > 3< / td >
< td > 3< / td >
< td > 5< / td >
< / tr >
< tr >
< td > 6< / td >
< td > 6< / td >
< td > < / td >
< td > 9< / td >
< td > 3< / td >
< td > 6< / td >
< / tr >
< tr >
< td > 7< / td >
< td > 7< / td >
< td > < / td >
< td > 5< / td >
< td > 5< / td >
< td > 7< / td >
< / tr >
< tr >
< td > 8< / td >
< td > 2< / td >
< td > < / td >
< td > 6< / td >
< td > 6< / td >
< td > 8< / td >
< / tr >
< tr >
< td > 9< / td >
< td > 3< / td >
< td > < / td >
< td > 7< / td >
< td > 7< / td >
< td > 9< / td >
< / tr >
< tr >
< td > 10< / td >
< td > 10< / td >
< td > < / td >
< td > 10< / td >
< td > 10< / td >
< td > 10< / td >
< / tr >
< / tbody >
< / table >
< / div > < br >
Let $E(k)$ be the $k$th element in the sorted $n$ column; for example, $E(4) = 8$ and $E(6) = 9$. If $rad(n)$ is sorted for $1 ≤ n ≤ 100000$, find $E(10000)$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
`orderedRadicals()` should return `21417` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-16 21:38:37 +02:00
assert.strictEqual(orderedRadicals(), 21417);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-16 21:38:37 +02:00
function orderedRadicals() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-16 21:38:37 +02:00
orderedRadicals();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```