Files

143 lines
2.6 KiB
Markdown
Raw Permalink Normal View History

---
id: 5900f3e81000cf542c50fefb
title: 'Problem 124: Ordered radicals'
challengeType: 5
forumTopicId: 301751
dashedName: problem-124-ordered-radicals
---
# --description--
The radical of $n$, $rad(n)$, is the product of the distinct prime factors of $n$. For example, $504 = 2^3 × 3^2 × 7$, so $rad(504) = 2 × 3 × 7 = 42$.
If we calculate $rad(n)$ for $1 ≤ n ≤ 10$, then sort them on $rad(n)$, and sorting on $n$ if the radical values are equal, we get:
<div style="text-align: center;">
<table cellpadding="2" cellspacing="0" border="0" align="center">
<tbody>
<tr>
<td colspan="2">$Unsorted$</td>
<td></td>
<td colspan="3">$Sorted$</td>
</tr>
<tr>
<td>$n$</td>
<td>$rad(n)$</td>
<td></td>
<td>$n$</td>
<td>$rad(n)$</td>
<td>$k$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td></td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td></td>
<td>7</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
</div><br>
Let $E(k)$ be the $k$th element in the sorted $n$ column; for example, $E(4) = 8$ and $E(6) = 9$. If $rad(n)$ is sorted for $1 ≤ n ≤ 100000$, find $E(10000)$.
# --hints--
`orderedRadicals()` should return `21417`.
```js
assert.strictEqual(orderedRadicals(), 21417);
```
# --seed--
## --seed-contents--
```js
function orderedRadicals() {
return true;
}
orderedRadicals();
```
# --solutions--
```js
// solution required
```