2018-09-30 23:01:58 +01:00
---
id: 5900f3ef1000cf542c50ff01
title: 'Problem 129: Repunit divisibility'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301756
2021-01-13 03:31:00 +01:00
dashedName: problem-129-repunit-divisibility
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2021-07-16 21:38:37 +02:00
A number consisting entirely of ones is called a repunit. We shall define $R(k)$ to be a repunit of length $k$; for example, $R(6) = 111111$.
2020-11-27 19:02:05 +01:00
2021-07-16 21:38:37 +02:00
Given that $n$ is a positive integer and $GCD(n, 10) = 1$, it can be shown that there always exists a value, $k$, for which $R(k)$ is divisible by $n$, and let $A(n)$ be the least such value of $k$; for example, $A(7) = 6$ and $A(41) = 5$.
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
The least value of $n$ for which $A(n)$ first exceeds ten is 17.
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
Find the least value of $n$ for which $A(n)$ first exceeds one-million.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-16 21:38:37 +02:00
`repunitDivisibility()` should return `1000023` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-16 21:38:37 +02:00
assert.strictEqual(repunitDivisibility(), 1000023);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-16 21:38:37 +02:00
function repunitDivisibility() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-16 21:38:37 +02:00
repunitDivisibility();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```