Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-269-polynomials-with-at-least-one-integer-root.md

55 lines
1.1 KiB
Markdown
Raw Permalink Normal View History

---
id: 5900f4791000cf542c50ff8c
title: 'Problem 269: Polynomials with at least one integer root'
challengeType: 5
forumTopicId: 301918
dashedName: problem-269-polynomials-with-at-least-one-integer-root
---
# --description--
A root or zero of a polynomial $P(x)$ is a solution to the equation $P(x) = 0$.
Define $P_n$ as the polynomial whose coefficients are the digits of $n$.
For example, $P_{5703}(x) = 5x^3 + 7x^2 + 3$.
We can see that:
- $P_n(0)$ is the last digit of $n$,
- $P_n(1)$ is the sum of the digits of $n$,
- $Pn(10)$ is $n$ itself.
Define $Z(k)$ as the number of positive integers, $n$, not exceeding $k$ for which the polynomial $P_n$ has at least one integer root.
It can be verified that $Z(100\\,000)$ is 14696.
What is $Z({10}^{16})$?
# --hints--
`polynomialsWithOneIntegerRoot()` should return `1311109198529286`.
```js
assert.strictEqual(polynomialsWithOneIntegerRoot(), 1311109198529286);
```
# --seed--
## --seed-contents--
```js
function polynomialsWithOneIntegerRoot() {
return true;
}
polynomialsWithOneIntegerRoot();
```
# --solutions--
```js
// solution required
```