1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4791000cf542c50ff8c | Problem 269: Polynomials with at least one integer root | 5 | 301918 | problem-269-polynomials-with-at-least-one-integer-root |
--description--
A root or zero of a polynomial P(x)
is a solution to the equation P(x) = 0
.
Define P_n
as the polynomial whose coefficients are the digits of n
.
For example, P_{5703}(x) = 5x^3 + 7x^2 + 3
.
We can see that:
P_n(0)
is the last digit ofn
,P_n(1)
is the sum of the digits ofn
,Pn(10)
isn
itself.
Define Z(k)
as the number of positive integers, n
, not exceeding k
for which the polynomial P_n
has at least one integer root.
It can be verified that Z(100\\,000)
is 14696.
What is Z({10}^{16})
?
--hints--
polynomialsWithOneIntegerRoot()
should return 1311109198529286
.
assert.strictEqual(polynomialsWithOneIntegerRoot(), 1311109198529286);
--seed--
--seed-contents--
function polynomialsWithOneIntegerRoot() {
return true;
}
polynomialsWithOneIntegerRoot();
--solutions--
// solution required