Files

49 lines
893 B
Markdown
Raw Permalink Normal View History

---
id: 5900f47e1000cf542c50ff90
title: 'Problem 273: Sum of Squares'
challengeType: 5
forumTopicId: 301923
dashedName: problem-273-sum-of-squares
---
# --description--
Consider equations of the form: $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer.
For $N = 65$ there are two solutions:
$a = 1, b = 8$ and $a = 4, b = 7$.
We call $S(N)$ the sum of the values of $a$ of all solutions of $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer.
Thus $S(65) = 1 + 4 = 5$.
Find $\sum S(N)$, for all squarefree $N$ only divisible by primes of the form $4k + 1$ with $4k + 1 < 150$.
# --hints--
`sumOfSquares()` should return `2032447591196869000`.
```js
assert.strictEqual(sumOfSquares(), 2032447591196869000);
```
# --seed--
## --seed-contents--
```js
function sumOfSquares() {
return true;
}
sumOfSquares();
```
# --solutions--
```js
// solution required
```