893 B
893 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f47e1000cf542c50ff90 | Problem 273: Sum of Squares | 5 | 301923 | problem-273-sum-of-squares |
--description--
Consider equations of the form: a^2 + b^2 = N
, 0 ≤ a ≤ b
, a
, b
and N
integer.
For N = 65
there are two solutions:
a = 1, b = 8
and a = 4, b = 7
.
We call S(N)
the sum of the values of a
of all solutions of a^2 + b^2 = N
, 0 ≤ a ≤ b
, a
, b
and N
integer.
Thus S(65) = 1 + 4 = 5
.
Find \sum S(N)
, for all squarefree N
only divisible by primes of the form 4k + 1
with 4k + 1 < 150
.
--hints--
sumOfSquares()
should return 2032447591196869000
.
assert.strictEqual(sumOfSquares(), 2032447591196869000);
--seed--
--seed-contents--
function sumOfSquares() {
return true;
}
sumOfSquares();
--solutions--
// solution required