Files
gikf f93acf28a6 fix(curriculum): clean-up Project Euler 261-280 (#42905)
* fix: clean-up Project Euler 261-280

* fix: typo

* fix: typo

* fix: typo
2021-07-24 09:09:54 +02:00

893 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f47e1000cf542c50ff90 Problem 273: Sum of Squares 5 301923 problem-273-sum-of-squares

--description--

Consider equations of the form: a^2 + b^2 = N, 0 ≤ a ≤ b, a, b and N integer.

For N = 65 there are two solutions:

a = 1, b = 8 and a = 4, b = 7.

We call S(N) the sum of the values of a of all solutions of a^2 + b^2 = N, 0 ≤ a ≤ b, a, b and N integer.

Thus S(65) = 1 + 4 = 5.

Find \sum S(N), for all squarefree N only divisible by primes of the form 4k + 1 with 4k + 1 < 150.

--hints--

sumOfSquares() should return 2032447591196869000.

assert.strictEqual(sumOfSquares(), 2032447591196869000);

--seed--

--seed-contents--

function sumOfSquares() {

  return true;
}

sumOfSquares();

--solutions--

// solution required