2018-09-30 23:01:58 +01:00
---
id: 5900f4ab1000cf542c50ffbd
title: 'Problem 318: 2011 nines'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 301974
2021-01-13 03:31:00 +01:00
dashedName: problem-318-2011-nines
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2021-07-21 17:59:56 +02:00
Consider the real number $\sqrt{2} + \sqrt{3}$.
2020-11-27 19:02:05 +01:00
2021-07-21 17:59:56 +02:00
When we calculate the even powers of $\sqrt{2} + \sqrt{3}$ we get:
2020-11-27 19:02:05 +01:00
2021-07-21 17:59:56 +02:00
$$\begin{align}
& {(\sqrt{2} + \sqrt{3})}^2 = 9.898979485566356\ldots \\\\
& {(\sqrt{2} + \sqrt{3})}^4 = 97.98979485566356\ldots \\\\
& {(\sqrt{2} + \sqrt{3})}^6 = 969.998969071069263\ldots \\\\
& {(\sqrt{2} + \sqrt{3})}^8 = 9601.99989585502907\ldots \\\\
& {(\sqrt{2} + \sqrt{3})}^{10} = 95049.999989479221\ldots \\\\
& {(\sqrt{2} + \sqrt{3})}^{12} = 940897.9999989371855\ldots \\\\
& {(\sqrt{2} + \sqrt{3})}^{14} = 9313929.99999989263\ldots \\\\
& {(\sqrt{2} + \sqrt{3})}^{16} = 92198401.99999998915\ldots \\\\
\end{align}$$
2020-11-27 19:02:05 +01:00
2021-07-21 17:59:56 +02:00
It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of ${(\sqrt{2} + \sqrt{3})}^{2n}$ approaches 1 for large $n$.
2020-11-27 19:02:05 +01:00
2021-07-21 17:59:56 +02:00
Consider all real numbers of the form $\sqrt{p} + \sqrt{q}$ with $p$ and $q$ positive integers and $p < q$, such that the fractional part of ${(\sqrt{p} + \sqrt{q})}^{2n}$ approaches 1 for large $n$.
2020-11-27 19:02:05 +01:00
2021-07-21 17:59:56 +02:00
Let $C(p,q,n)$ be the number of consecutive nines at the beginning of the fractional part of ${(\sqrt{p} + \sqrt{q})}^{2n}$.
2020-11-27 19:02:05 +01:00
2021-07-21 17:59:56 +02:00
Let $N(p,q)$ be the minimal value of $n$ such that $C(p,q,n) ≥ 2011$.
2020-11-27 19:02:05 +01:00
2021-07-21 17:59:56 +02:00
Find $\sum N(p,q)$ for $p + q ≤ 2011$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-21 17:59:56 +02:00
`twoThousandElevenNines()` should return `709313889` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-21 17:59:56 +02:00
assert.strictEqual(twoThousandElevenNines(), 709313889);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-21 17:59:56 +02:00
function twoThousandElevenNines() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-21 17:59:56 +02:00
twoThousandElevenNines();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```