* fix: clean-up Project Euler 301-320 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.8 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4ab1000cf542c50ffbd | Problem 318: 2011 nines | 5 | 301974 | problem-318-2011-nines |
--description--
Consider the real number \sqrt{2} + \sqrt{3}
.
When we calculate the even powers of \sqrt{2} + \sqrt{3}
we get:
$$\begin{align} & {(\sqrt{2} + \sqrt{3})}^2 = 9.898979485566356\ldots \\ & {(\sqrt{2} + \sqrt{3})}^4 = 97.98979485566356\ldots \\ & {(\sqrt{2} + \sqrt{3})}^6 = 969.998969071069263\ldots \\ & {(\sqrt{2} + \sqrt{3})}^8 = 9601.99989585502907\ldots \\ & {(\sqrt{2} + \sqrt{3})}^{10} = 95049.999989479221\ldots \\ & {(\sqrt{2} + \sqrt{3})}^{12} = 940897.9999989371855\ldots \\ & {(\sqrt{2} + \sqrt{3})}^{14} = 9313929.99999989263\ldots \\ & {(\sqrt{2} + \sqrt{3})}^{16} = 92198401.99999998915\ldots \\ \end{align}$$
It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of {(\sqrt{2} + \sqrt{3})}^{2n}
approaches 1 for large n
.
Consider all real numbers of the form \sqrt{p} + \sqrt{q}
with p
and q
positive integers and p < q
, such that the fractional part of {(\sqrt{p} + \sqrt{q})}^{2n}
approaches 1 for large n
.
Let C(p,q,n)
be the number of consecutive nines at the beginning of the fractional part of {(\sqrt{p} + \sqrt{q})}^{2n}
.
Let N(p,q)
be the minimal value of n
such that C(p,q,n) ≥ 2011
.
Find \sum N(p,q)
for p + q ≤ 2011
.
--hints--
twoThousandElevenNines()
should return 709313889
.
assert.strictEqual(twoThousandElevenNines(), 709313889);
--seed--
--seed-contents--
function twoThousandElevenNines() {
return true;
}
twoThousandElevenNines();
--solutions--
// solution required