2018-09-30 23:01:58 +01:00
---
id: 5900f4c11000cf542c50ffd3
2018-10-20 21:02:47 +03:00
title: 'Problem 341: Golomb''s self-describing sequence'
2020-11-27 19:02:05 +01:00
challengeType: 5
2019-08-05 09:17:33 -07:00
forumTopicId: 302000
2021-01-13 03:31:00 +01:00
dashedName: problem-341-golombs-self-describing-sequence
2018-09-30 23:01:58 +01:00
---
2020-11-27 19:02:05 +01:00
# --description--
2018-09-30 23:01:58 +01:00
2021-07-29 19:14:22 +02:00
The Golomb's self-describing sequence ($G(n)$) is the only nondecreasing sequence of natural numbers such that $n$ appears exactly $G(n)$ times in the sequence. The values of $G(n)$ for the first few $n$ are
2018-09-30 23:01:58 +01:00
2021-07-29 19:14:22 +02:00
$$\begin{array}{c}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \ldots \\\\
G(n) & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & \ldots
\end{array}$$
2018-09-30 23:01:58 +01:00
2021-07-29 19:14:22 +02:00
You are given that $G({10}^3) = 86$, $G({10}^6) = 6137$.
2018-09-30 23:01:58 +01:00
2021-07-29 19:14:22 +02:00
You are also given that $\sum G(n^3) = 153\\,506\\,976$ for $1 ≤ n < {10}^3$.
Find $\sum G(n^3)$ for $1 ≤ n < {10}^6$.
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
# --hints--
2018-09-30 23:01:58 +01:00
2021-07-29 19:14:22 +02:00
`golombsSequence()` should return `56098610614277016` .
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
```js
2021-07-29 19:14:22 +02:00
assert.strictEqual(golombsSequence(), 56098610614277016);
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --seed--
2018-09-30 23:01:58 +01:00
2020-11-27 19:02:05 +01:00
## --seed-contents--
2018-09-30 23:01:58 +01:00
```js
2021-07-29 19:14:22 +02:00
function golombsSequence() {
2020-09-15 09:57:40 -07:00
2018-09-30 23:01:58 +01:00
return true;
}
2021-07-29 19:14:22 +02:00
golombsSequence();
2018-09-30 23:01:58 +01:00
```
2020-11-27 19:02:05 +01:00
# --solutions--
2018-09-30 23:01:58 +01:00
```js
// solution required
```