* fix: clean-up Project Euler 341-360 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4c11000cf542c50ffd3 | Problem 341: Golomb's self-describing sequence | 5 | 302000 | problem-341-golombs-self-describing-sequence |
--description--
The Golomb's self-describing sequence (G(n)
) is the only nondecreasing sequence of natural numbers such that n
appears exactly G(n)
times in the sequence. The values of G(n)
for the first few n
are
$$\begin{array}{c} n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \ldots \\ G(n) & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & \ldots \end{array}$$
You are given that G({10}^3) = 86
, G({10}^6) = 6137
.
You are also given that \sum G(n^3) = 153\\,506\\,976
for 1 ≤ n < {10}^3
.
Find \sum G(n^3)
for 1 ≤ n < {10}^6
.
--hints--
golombsSequence()
should return 56098610614277016
.
assert.strictEqual(golombsSequence(), 56098610614277016);
--seed--
--seed-contents--
function golombsSequence() {
return true;
}
golombsSequence();
--solutions--
// solution required