* fix: clean-up Project Euler 341-360 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
50 lines
1.1 KiB
Markdown
50 lines
1.1 KiB
Markdown
---
|
|
id: 5900f4c11000cf542c50ffd3
|
|
title: 'Problem 341: Golomb''s self-describing sequence'
|
|
challengeType: 5
|
|
forumTopicId: 302000
|
|
dashedName: problem-341-golombs-self-describing-sequence
|
|
---
|
|
|
|
# --description--
|
|
|
|
The Golomb's self-describing sequence ($G(n)$) is the only nondecreasing sequence of natural numbers such that $n$ appears exactly $G(n)$ times in the sequence. The values of $G(n)$ for the first few $n$ are
|
|
|
|
$$\begin{array}{c}
|
|
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \ldots \\\\
|
|
G(n) & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & \ldots
|
|
\end{array}$$
|
|
|
|
You are given that $G({10}^3) = 86$, $G({10}^6) = 6137$.
|
|
|
|
You are also given that $\sum G(n^3) = 153\\,506\\,976$ for $1 ≤ n < {10}^3$.
|
|
|
|
Find $\sum G(n^3)$ for $1 ≤ n < {10}^6$.
|
|
|
|
# --hints--
|
|
|
|
`golombsSequence()` should return `56098610614277016`.
|
|
|
|
```js
|
|
assert.strictEqual(golombsSequence(), 56098610614277016);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function golombsSequence() {
|
|
|
|
return true;
|
|
}
|
|
|
|
golombsSequence();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|