Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-341-golombs-self-describing-sequence.md
gikf c18554dd44 fix(curriculum): clean-up Project Euler 341-360 (#42998)
* fix: clean-up Project Euler 341-360

* fix: improve wording

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-29 19:14:22 +02:00

50 lines
1.1 KiB
Markdown

---
id: 5900f4c11000cf542c50ffd3
title: 'Problem 341: Golomb''s self-describing sequence'
challengeType: 5
forumTopicId: 302000
dashedName: problem-341-golombs-self-describing-sequence
---
# --description--
The Golomb's self-describing sequence ($G(n)$) is the only nondecreasing sequence of natural numbers such that $n$ appears exactly $G(n)$ times in the sequence. The values of $G(n)$ for the first few $n$ are
$$\begin{array}{c}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \ldots \\\\
G(n) & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & \ldots
\end{array}$$
You are given that $G({10}^3) = 86$, $G({10}^6) = 6137$.
You are also given that $\sum G(n^3) = 153\\,506\\,976$ for $1 ≤ n &lt; {10}^3$.
Find $\sum G(n^3)$ for $1 ≤ n &lt; {10}^6$.
# --hints--
`golombsSequence()` should return `56098610614277016`.
```js
assert.strictEqual(golombsSequence(), 56098610614277016);
```
# --seed--
## --seed-contents--
```js
function golombsSequence() {
return true;
}
golombsSequence();
```
# --solutions--
```js
// solution required
```