Files

143 lines
2.7 KiB
Markdown
Raw Permalink Normal View History

---
id: 5900f3e81000cf542c50fefb
title: 'Problema 124: radicali ordinati'
challengeType: 5
forumTopicId: 301751
dashedName: problem-124-ordered-radicals
---
# --description--
Il radicale di $n$, $rad(n)$, è il prodotto dei fattori distinti primi di $n$. Per esempio, $504 = 2^3 ×3^2 × 7$, quindi $rad(504) = 2 × 3 × 7 = 42$.
Se calcoliamo $rad(n)$ for $1 ≤ n ≤ 10$,, quindi ordiniamo su $rad(n)$, e ordiniamo su $n$ se i valori dei radicali sono uguali, otteniamo:
<div style="text-align: center;">
<table cellpadding="2" cellspacing="0" border="0" align="center">
<tbody>
<tr>
<td colspan="2">$non in ordine$</td>
<td></td>
<td colspan="3">$ordinato$</td>
</tr>
<tr>
<td>$n$</td>
<td>$rad(n)$</td>
<td></td>
<td>$n$</td>
<td>$rad(n)$</td>
<td>$k$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td></td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td></td>
<td>7</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
</div><br>
Sia $E(k)$ l'elemento $k$-simo nella colonna $n$ ordinata; per esempio, $E(4) = 8$ e $E(6) = 9$. Se $rad(n)$ è ordinato per $1 ≤ n ≤ 100000$, trova $E(10000)$.
# --hints--
`orderedRadicals()` dovrebbe restituire `21417`.
```js
assert.strictEqual(orderedRadicals(), 21417);
```
# --seed--
## --seed-contents--
```js
function orderedRadicals() {
return true;
}
orderedRadicals();
```
# --solutions--
```js
// solution required
```