Considere que (a, b, c) representam os três lados de um triângulo retângulo com lados cujo comprimento são números inteiros. É possível posicionar quatro desses triângulos juntos para formar um quadrado com comprimento c.
Por exemplo, triângulos de lados (3, 4, 5) podem ser colocados juntos para formar um quadrado de 5 por 5 com um orifício de 1 por 1 no meio. Também pode-se ver que o quadrado de 5 por 5 pode ser preenchido com vinte e cinco blocos quadrados de 1 por 1.
<imgclass="img-responsive center-block"alt="dois quadrados de 5 por 5: no primeiro, quatro triângulos de medidas 3x4x5 são dispostos de modo a criar um orifício de 1x1 no meio; no segundo, há vinte e cinco quadrados de 1x1"src="https://cdn.freecodecamp.org/curriculum/project-euler/pythagorean-tiles.png"style="background-color: white; padding: 10px;"/>
No entanto, se os triângulos de (5, 12, 13) fossem usados, o orifício mediria 7 por 7. Esses quadrados de 7 por 7 não poderiam ser usados para preencher o quadrado de 13 por 13.
Dado que o perímetro do triângulo retângulo é inferior a cem milhões, quantos triângulos trigonométricos pitagóricos permitiriam que tal preenchimento acontecesse?