- Para $i > 2$, $P_i$ é o único ponto $H$ que é diferente de $P_{i - 1}$ e tal que a linha $P_iP_{i - 1}$ é paralela à linha $P_{i - 2}X$. Pode-se ver que $P_i$ está corretamente definido e que suas coordenadas são sempre racionais.
<imgclass="img-responsive center-block"alt="animação mostrando os pontos de definição de P_1 a P_6"src="https://cdn.freecodecamp.org/curriculum/project-euler/sequence-of-points-on-a-hyperbola.gif"style="background-color: white; padding: 10px;"/>
Você é informado de que $P_3 = (\frac{-19}{2}, \frac{-229}{24})$, $P_4 = (\frac{1267}{144}, \frac{-37}{12})$ and $P_7 = (\frac{17.194.218.091}{143.327.232}, \frac{274.748.766.781}{1.719.926.784})$.
Encontre $P_n$ para $n = {11}^{14}$ no seguinte formato: se $P_n = (\frac{a}{b}, \frac{c}{d})$, onde as frações estão nos menores termos e os denominadores são positivos, então a resposta é $(a + b + c + d)\bmod 1.000.000.007$.