fix(curriculum): rework Project Euler 91 (#42224)

* fix: rework challenge to use argument in function

* fix: add solution

* fix: use MathJax to improve math notation
This commit is contained in:
gikf
2021-05-27 19:27:16 +02:00
committed by GitHub
parent d70b17bca7
commit 2b1d0cdaf8

View File

@ -8,28 +8,46 @@ dashedName: problem-91-right-triangles-with-integer-coordinates
# --description--
The points P (`x`<sub>1</sub>, `y`<sub>1</sub>) and Q (`x`<sub>2</sub>, `y`<sub>2</sub>) are plotted at integer co-ordinates and are joined to the origin, O(0,0), to form ΔOPQ.
The points ${P}(x_1, y_1)$ and ${Q}(x_2, y_2)$ are plotted at integer co-ordinates and are joined to the origin, ${O}(0, 0)$, to form ${\Delta}OPQ$.
<img class="img-responsive center-block" alt="a graph plotting points P (x_1, y_1) and Q(x_2, y_2) at integer coordinates that are joined to the origin O (0, 0)" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-1.png" style="background-color: white; padding: 10px;">
There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is, 0 ≤ `x`<sub>1</sub>, `y`<sub>1</sub>, `x`<sub>2</sub>, `y`<sub>2</sub> ≤ 2.
There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is, $0 ≤ x_1, y_1, x_2, y_2 ≤ 2$.
<img class="img-responsive center-block" alt="a diagram showing the 14 triangles containing a right angle that can be formed when each coordinate is between 0 and 2" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-2.png" style="background-color: white; padding: 10px;">
Given that 0 ≤ `x`<sub>1</sub>, `y`<sub>1</sub>, `x`<sub>2</sub>, `y`<sub>2</sub> ≤ 50, how many right triangles can be formed?
Given that $0 ≤ x_1, y_1, x_2, y_2 ≤ limit$, how many right triangles can be formed?
# --hints--
`rightTrianglesIntCoords()` should return a number.
`rightTrianglesIntCoords(2)` should return a number.
```js
assert(typeof rightTrianglesIntCoords() === 'number');
assert(typeof rightTrianglesIntCoords(2) === 'number');
```
`rightTrianglesIntCoords()` should return 14234.
`rightTrianglesIntCoords(2)` should return `14`.
```js
assert.strictEqual(rightTrianglesIntCoords(), 14234);
assert.strictEqual(rightTrianglesIntCoords(2), 14);
```
`rightTrianglesIntCoords(10)` should return `448`.
```js
assert.strictEqual(rightTrianglesIntCoords(10), 448);
```
`rightTrianglesIntCoords(25)` should return `3207`.
```js
assert.strictEqual(rightTrianglesIntCoords(25), 3207);
```
`rightTrianglesIntCoords(50)` should return `14234`.
```js
assert.strictEqual(rightTrianglesIntCoords(50), 14234);
```
# --seed--
@ -37,16 +55,65 @@ assert.strictEqual(rightTrianglesIntCoords(), 14234);
## --seed-contents--
```js
function rightTrianglesIntCoords() {
function rightTrianglesIntCoords(limit) {
return true;
}
rightTrianglesIntCoords();
rightTrianglesIntCoords(2);
```
# --solutions--
```js
// solution required
function rightTrianglesIntCoords(limit) {
function isRightTriangle(points) {
for (let i = 0; i < points.length; i++) {
const pointA = points[i];
const pointB = points[(i + 1) % 3];
const pointC = points[(i + 2) % 3];
const vectorAB = [pointB[0] - pointA[0], pointB[1] - pointA[1]];
const vectorAC = [pointC[0] - pointA[0], pointC[1] - pointA[1]];
if (isRightAngleBetween(vectorAB, vectorAC)) {
return true;
}
}
return false;
}
function isRightAngleBetween(vector1, vector2) {
return vector1[0] * vector2[0] + vector1[1] * vector2[1] === 0;
}
function getSetKey(points) {
return (
'0.0,' +
points
.sort((a, b) => a[0] - b[0])
.map(point => point.join('.'))
.join(',')
);
}
const pointO = [0, 0];
const rightTriangles = new Set();
for (let x1 = 1; x1 <= limit; x1++) {
for (let y1 = 0; y1 <= limit; y1++) {
const pointP = [x1, y1];
for (let x2 = 0; x2 <= limit; x2++) {
for (let y2 = 1; y2 <= limit; y2++) {
const pointQ = [x2, y2];
if (pointP[0] === pointQ[0] && pointP[1] === pointQ[1]) {
continue;
}
if (isRightTriangle([pointO, pointP, pointQ])) {
rightTriangles.add(getSetKey([pointP, pointQ]));
}
}
}
}
}
return rightTriangles.size;
}
```