fix(curriculum): rework Project Euler 91 (#42224)
* fix: rework challenge to use argument in function * fix: add solution * fix: use MathJax to improve math notation
This commit is contained in:
@ -8,28 +8,46 @@ dashedName: problem-91-right-triangles-with-integer-coordinates
|
|||||||
|
|
||||||
# --description--
|
# --description--
|
||||||
|
|
||||||
The points P (`x`<sub>1</sub>, `y`<sub>1</sub>) and Q (`x`<sub>2</sub>, `y`<sub>2</sub>) are plotted at integer co-ordinates and are joined to the origin, O(0,0), to form ΔOPQ.
|
The points ${P}(x_1, y_1)$ and ${Q}(x_2, y_2)$ are plotted at integer co-ordinates and are joined to the origin, ${O}(0, 0)$, to form ${\Delta}OPQ$.
|
||||||
|
|
||||||
<img class="img-responsive center-block" alt="a graph plotting points P (x_1, y_1) and Q(x_2, y_2) at integer coordinates that are joined to the origin O (0, 0)" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-1.png" style="background-color: white; padding: 10px;">
|
<img class="img-responsive center-block" alt="a graph plotting points P (x_1, y_1) and Q(x_2, y_2) at integer coordinates that are joined to the origin O (0, 0)" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-1.png" style="background-color: white; padding: 10px;">
|
||||||
|
|
||||||
There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is, 0 ≤ `x`<sub>1</sub>, `y`<sub>1</sub>, `x`<sub>2</sub>, `y`<sub>2</sub> ≤ 2.
|
There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is, $0 ≤ x_1, y_1, x_2, y_2 ≤ 2$.
|
||||||
|
|
||||||
<img class="img-responsive center-block" alt="a diagram showing the 14 triangles containing a right angle that can be formed when each coordinate is between 0 and 2" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-2.png" style="background-color: white; padding: 10px;">
|
<img class="img-responsive center-block" alt="a diagram showing the 14 triangles containing a right angle that can be formed when each coordinate is between 0 and 2" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-2.png" style="background-color: white; padding: 10px;">
|
||||||
|
|
||||||
Given that 0 ≤ `x`<sub>1</sub>, `y`<sub>1</sub>, `x`<sub>2</sub>, `y`<sub>2</sub> ≤ 50, how many right triangles can be formed?
|
Given that $0 ≤ x_1, y_1, x_2, y_2 ≤ limit$, how many right triangles can be formed?
|
||||||
|
|
||||||
# --hints--
|
# --hints--
|
||||||
|
|
||||||
`rightTrianglesIntCoords()` should return a number.
|
`rightTrianglesIntCoords(2)` should return a number.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert(typeof rightTrianglesIntCoords() === 'number');
|
assert(typeof rightTrianglesIntCoords(2) === 'number');
|
||||||
```
|
```
|
||||||
|
|
||||||
`rightTrianglesIntCoords()` should return 14234.
|
`rightTrianglesIntCoords(2)` should return `14`.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert.strictEqual(rightTrianglesIntCoords(), 14234);
|
assert.strictEqual(rightTrianglesIntCoords(2), 14);
|
||||||
|
```
|
||||||
|
|
||||||
|
`rightTrianglesIntCoords(10)` should return `448`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(rightTrianglesIntCoords(10), 448);
|
||||||
|
```
|
||||||
|
|
||||||
|
`rightTrianglesIntCoords(25)` should return `3207`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(rightTrianglesIntCoords(25), 3207);
|
||||||
|
```
|
||||||
|
|
||||||
|
`rightTrianglesIntCoords(50)` should return `14234`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(rightTrianglesIntCoords(50), 14234);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --seed--
|
# --seed--
|
||||||
@ -37,16 +55,65 @@ assert.strictEqual(rightTrianglesIntCoords(), 14234);
|
|||||||
## --seed-contents--
|
## --seed-contents--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
function rightTrianglesIntCoords() {
|
function rightTrianglesIntCoords(limit) {
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
rightTrianglesIntCoords();
|
rightTrianglesIntCoords(2);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --solutions--
|
# --solutions--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
// solution required
|
function rightTrianglesIntCoords(limit) {
|
||||||
|
function isRightTriangle(points) {
|
||||||
|
for (let i = 0; i < points.length; i++) {
|
||||||
|
const pointA = points[i];
|
||||||
|
const pointB = points[(i + 1) % 3];
|
||||||
|
const pointC = points[(i + 2) % 3];
|
||||||
|
const vectorAB = [pointB[0] - pointA[0], pointB[1] - pointA[1]];
|
||||||
|
const vectorAC = [pointC[0] - pointA[0], pointC[1] - pointA[1]];
|
||||||
|
|
||||||
|
if (isRightAngleBetween(vectorAB, vectorAC)) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
function isRightAngleBetween(vector1, vector2) {
|
||||||
|
return vector1[0] * vector2[0] + vector1[1] * vector2[1] === 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
function getSetKey(points) {
|
||||||
|
return (
|
||||||
|
'0.0,' +
|
||||||
|
points
|
||||||
|
.sort((a, b) => a[0] - b[0])
|
||||||
|
.map(point => point.join('.'))
|
||||||
|
.join(',')
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
const pointO = [0, 0];
|
||||||
|
const rightTriangles = new Set();
|
||||||
|
for (let x1 = 1; x1 <= limit; x1++) {
|
||||||
|
for (let y1 = 0; y1 <= limit; y1++) {
|
||||||
|
const pointP = [x1, y1];
|
||||||
|
for (let x2 = 0; x2 <= limit; x2++) {
|
||||||
|
for (let y2 = 1; y2 <= limit; y2++) {
|
||||||
|
const pointQ = [x2, y2];
|
||||||
|
if (pointP[0] === pointQ[0] && pointP[1] === pointQ[1]) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
if (isRightTriangle([pointO, pointP, pointQ])) {
|
||||||
|
rightTriangles.add(getSetKey([pointP, pointQ]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return rightTriangles.size;
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
Reference in New Issue
Block a user